
Shallow EDSLs and Object-Oriented Programming
Beyond Simple Compositionality

Weixin Zhanga and Bruno C. d. S. Oliveiraa
a The University of Hong Kong, Hong Kong, China

Abstract Context. Embedded Domain-Specific Languages (EDSLs) are a common and widely used approach
to DSLs in various languages, including Haskell and Scala. There are two main implementation techniques
for EDSLs: shallow embeddings and deep embeddings.

Inquiry. Shallow embeddings are quite simple, but they have been criticized in the past for being quite
limited in terms of modularity and reuse. In particular, it is often argued that supporting multiple DSL inter-
pretations in shallow embeddings is difficult.

Approach. This paper argues that shallow EDSLs and Object-Oriented Programming (OOP) are closely re-
lated. Gibbons and Wu already discussed the relationship between shallow EDSLs and procedural abstraction,
while Cook discussed the connection between procedural abstraction and OOP. We make the transitive step
in this paper by connecting shallow EDSLs directly to OOP via procedural abstraction. The knowledge about
this relationship enables us to improve on implementation techniques for EDSLs.

Knowledge. This paper argues that common OOP mechanisms (including inheritance, subtyping, and type-
refinement) increase the modularity and reuse of shallow EDSLs when compared to classical procedural ab-
straction by enabling a simple way to express multiple, possibly dependent, interpretations.

Grounding. We make our arguments by using Gibbons and Wu’s examples, where procedural abstraction
is used in Haskell to model a simple shallow EDSL. We recode that EDSL in Scala and with an improved
OO-inspired Haskell encoding. We further illustrate our approach with a case study on refactoring a deep
external SQL query processor to make it more modular, shallow, and embedded.

Importance. This work is important for two reasons. Firstly, from an intellectual point of view, this work
establishes the connection between shallow embeddings and OOP, which enables a better understanding
of both concepts. Secondly, this work illustrates programming techniques that can be used to improve the
modularity and reuse of shallow EDSLs.

ACM CCS 2012
Software and its engineering → Language features; Domain specific languages;

Keywords embedded domain-specific languages, shallow embedding, object-oriented programming

The Art, Science, and Engineering of Programming

Submitted September 29, 2018

Published February 1, 2019

doi 10.22152/programming-journal.org/2019/3/10
© Weixin Zhang and Bruno C. d. S. Oliveira
This work is licensed under a “CC BY 4.0” license.
In The Art, Science, and Engineering of Programming, vol. 3, no. 3, 2019, article 10; 25 pages.

https://doi.org/10.22152/programming-journal.org/2019/3/10
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

Shallow EDSLs and Object-Oriented Programming

1 Introduction

Since Hudak’s seminal paper [10] on embedded domain-specific languages (EDSLs),
existing languages have been used to directly encode DSLs. Two common approaches
to EDSLs are the so-called shallow and deep embeddings. Deep embeddings emphasize
a syntax-first approach: the abstract syntax is defined first using a data type, and
then interpretations of the abstract syntax follow. The role of interpretations in deep
embeddings is to map syntactic values into semantic values in a semantic domain.
Shallow embeddings emphasize a semantics-first approach, where a semantic domain
is defined first. In the shallow approach, the operations of the EDSLs are interpreted
directly into the semantic domain. Therefore there is no data type representing
uninterpreted abstract syntax.
The trade-offs between shallow and deep embeddings have been widely discussed

[20, 11]. Deep embeddings enable transformations on the abstract syntax tree (AST),
and multiple interpretations are easy to implement. Shallow embeddings enforce
the property of compositionality by construction and are easily extended with new
EDSL operations. Such discussions lead to a generally accepted belief that it is hard to
support multiple interpretations [20] and AST transformations in shallow embeddings.
Compositionality is considered a sign of good language design, and it is one of the

hallmarks of denotational semantics. Compositionality means that a denotation (or
interpretation) of a language is constructed from the denotation of its parts. Composi-
tionality leads to a modular semantics, where adding new language constructs does
not require changes in the semantics of existing constructs. Because compositionality
offers a guideline for good language design, Erwig and Walkingshaw [6] argue that a
semantics-first approach to EDSLs is superior to a syntax-first approach. Shallow em-
beddings fit well with such a semantics-driven approach. Nevertheless, the limitations
of shallow embeddings compared to deep embeddings can deter their use.
This programming pearl shows that, given adequate language support, having

multiple modular interpretations in shallow DSLs is not only possible but simple.
Therefore we aim to debunk the belief that multiple interpretations are hard to model
with shallow embeddings. Several previous authors [7, 6] already observed that, by
using products and projections, multiple interpretations can be supported with a
cumbersome and often non-modular encoding. Moreover, it is also known that mul-
tiple interpretations without dependencies on other interpretations are modularized
easily using variants Church encodings [7, 2, 15]. We show that a solution for mul-
tiple interpretations, including dependencies, is encodable naturally when the host
language combines functional features with common OO features, such as subtyping,
inheritance, and type-refinement.
At the center of this pearl is Reynolds’ [17] idea of procedural abstraction, which

enables us to relate shallow embeddings and OOP directly. With procedural abstraction,
data is characterized by the operations that are performed over it. This pearl builds
on two independently observed connections to procedural abstraction:

Shallow Embeddings oo
Gibbons and Wu [7]

// Procedural Abstraction oo
Cook [4]

// OOP

10:2

Weixin Zhang and Bruno C. d. S. Oliveira

The first connection is between procedural abstraction and shallow embeddings. As
Gibbons and Wu [7] state, “it was probably known to Reynolds, who contrasted deep em-
beddings (‘user defined types’) and shallow (‘procedural data structures’)”. Gibbons and
Wu noted the connection between shallow embeddings and procedural abstractions,
although they did not go into much detail. The second connection is the connection
between OOP and procedural abstraction, which was discussed in depth by Cook [4].
We make our arguments concrete using Gibbons and Wu [7]’s examples, where

procedural abstraction is used in Haskell to model a simple shallow EDSL. We recode
that EDSL in Scala using Wang and Oliveira’s [23] extensible interpreter pattern, which
provides a simple solution to the Expression Problem [22]. The resulting Scala version
has modularity advantages over the Haskell version, due to the use of subtyping,
inheritance, and type-refinement. In particular, the Scala code can easily express
modular interpretations that may not only depend on themselves but also depend on
other modular interpretations, leading to our motto: beyond simple compositionality.

While Haskell does not natively support subtyping, inheritance, and type-refinement,
its powerful and expressive type system is sufficient to encode similar features. There-
fore we can port back to Haskell some of the ideas used in the Scala solution using
an improved Haskell encoding that has similar (and sometimes even better) benefits
in terms of modularity. In essence, in the Haskell solution we encode a form of sub-
typing on pairs using type classes. This is useful to avoid explicit projections, that
clutter the original Haskell solution. Inheritance is encoded by explicitly delegating
interpretations using Haskell superclasses. Finally, type-refinement is simulated using
the subtyping typeclass to introduce subtyping constraints.
While the techniques are still cumbersome for transformations, yielding efficient

shallow EDSLs is still possible via staging [19, 2]. By removing the limitation of multi-
ple interpretations, we enlarge the applicability of shallow embeddings. A concrete
example is our case study, which refactors an external SQL query processor that
employs deep embedding techniques [18] into a shallow EDSL. The refactored imple-
mentation allows both new (possibly dependent) interpretations and new constructs
to be introduced modularly without sacrificing performance. The complete code for
all examples and case study is available at https://github.com/wxzh/shallow-dsl.

2 Shallow object-oriented programming

This section shows how OOP and shallow embeddings are related via procedural
abstraction. We use the same DSL presented by Gibbons and Wu [7] as a running
example. We first give the original shallow embedded implementation in Haskell, and
rewrite it towards an “OOP style”. Then translating the program into a functional
OOP language like Scala becomes straightforward.

2.1 Scans: A DSL for parallel prefix circuits

Scans [8] is a DSL for describing parallel prefix circuits. Given an associative binary
operator •, the prefix sum of a non-empty sequence x1, x2, ..., xn is x1, x1 • x2, ...,x1 •

10:3

https://github.com/wxzh/shallow-dsl

Shallow EDSLs and Object-Oriented Programming

〈circuit〉 ::= ‘id’ 〈positive-number〉
| ‘fan’ 〈positive-number〉
| 〈circuit〉 ‘beside’ 〈circuit〉
| 〈circuit〉 ‘above’ 〈circuit〉
| ‘stretch’ 〈positive-numbers〉 〈circuit〉
| ‘(’ 〈circuit〉 ‘)’

Figure 1 The grammar of Scans.

(fan 2 beside fan 2) above
(stretch 2 2 fan 2) above
(id 1 beside fan 2 beside id 1)

Figure 2 The Brent-Kung circuit of width 4.

x2 • ... • xn. Such computation can be performed in parallel for a parallel prefix circuit.
Parallel prefix circuits have many applications, including binary addition and sorting
algorithms. The grammar of Scans is given in Figure 1. Scans has five constructs:
two primitives (id and fan) and three combinators (beside, above and stretch). Their
meanings are: id n contains n parallel wires; fan n has n parallel wires with the
leftmost wire connected to all other wires from top to bottom; c1 beside c2 joins two
circuits c1 and c2 horizontally; c1 above c2 combines two circuits of the same width
vertically; stretch ns c inserts wires into the circuit c so that the i th wire of c is stretched
to a position of ns1 + ...+ nsi, resulting in a new circuit of width by summing up ns.
Figure 2 visualizes a circuit constructed using all these five constructs. The structure
of this circuit is explained as follows. The whole circuit is vertically composed by three
sub-circuits: the top sub-circuit is a two 2-fans put side by side; the middle sub-circuit
is a 2-fan stretched by inserting a wire on the left-hand side of its first and second
wire; the bottom sub-circuit is a 2-fan in the middle of two 1-ids.

2.2 Shallow embeddings and OOP

Shallow embeddings define a language directly by encoding its semantics using
procedural abstraction. In the case of Scans, a shallow embedded implementation
(in Haskell) conforms to the following types:

type Circuit= ... -- the operations we wish to support for circuits
id :: Int→ Circuit
fan :: Int→ Circuit
beside :: Circuit→ Circuit→ Circuit
above :: Circuit→ Circuit→ Circuit
stretch :: [Int]→ Circuit→ Circuit

10:4

Weixin Zhang and Bruno C. d. S. Oliveira

The type Circuit, representing the semantic domain, is to be filled with a concrete type
according to the semantics. Each construct is declared as a function that produces a
Circuit. Suppose that the semantics of Scans calculates the width of a circuit. The
definitions are:

type Circuit= Int
id n = n
fan n = n
beside c1 c2 = c1 + c2

above c1 c2 = c1

stretch ns c = sum ns

For this interpretation, the Haskell domain is simply Int. This means that we will get
the width immediately after the construction of a circuit. Note that the Int domain
for width is a degenerate case of procedural abstraction: Int can be viewed as a no
argument function. In Haskell, due to laziness, Int is a good representation. In a
call-by-value language, a no-argument function ()→ Int is more appropriate to deal
correctly with potential control-flow language constructs.
Now we are able to construct the circuit in Figure 2 using these definitions:

> (fan 2 ‘beside‘ fan 2) ‘above‘ stretch [2,2] (fan 2) ‘above‘ (id 1 ‘beside‘ fan 2 ‘beside‘ id 1)
4

Towards OOP An isomorphic encoding of width is given below, where a record with
one field captures the domain and is declared as a newtype:

newtype Circuit1 = Circuit1 {width1 :: Int}
id1 n = Circuit1 {width1 = n}
fan1 n = Circuit1 {width1 = n}
beside1 c1 c2 = Circuit1 {width1 = width1 c1 +width1 c2}
above1 c1 c2 = Circuit1 {width1 = width1 c1}
stretch1 ns c = Circuit1 {width1 = sum ns}

The implementation is still shallow because Haskell’s newtype does not add any
operational behavior to the program. Hence the two programs are effectively the
same. However, having fields makes the program look more like an OO program.

Porting to Scala Indeed, we can easily translate the program from Haskell to Scala,
as shown in Figure 3. The idea is to map Haskell’s record types into an object inter-
face (modeled as a trait in Scala) Circuit1, and Haskell’s field declarations become
method declarations. Object interfaces make the connection to procedural abstraction
clear: data is modeled by the operations that can be performed over it. Each case in
the semantic function corresponds to a concrete implementation of Circuit1, where
function parameters are captured as immutable fields.
This implementation is essentially how we would model Scans with an OOP

language in the first place. A minor difference is the use of traits instead of classes in
implementing Circuit1. Although a class definition like

10:5

Shallow EDSLs and Object-Oriented Programming

// object interface
trait Circuit1 {def width : Int}
// concrete implementations
trait Id1 extends Circuit1 {

val n : Int
def width= n
}
trait Fan1 extends Circuit1 {

val n : Int
def width= n
}

trait Beside1 extends Circuit1 {
val c1, c2 : Circuit1

def width= c1.width+ c2.width
}
trait Above1 extends Circuit1 {

val c1, c2 : Circuit1

def width= c1.width
}
trait Stretch1 extends Circuit1 {

val ns : List[Int];val c : Circuit1

def width= ns.sum
}

Figure 3 Circuit interpretation in Scala.

class Id1 (n : Int) extends Circuit1 {def width= n}

is more common, some modularity offered by the trait version (e.g. mixin compo-
sition) is lost. To use this Scala implementation in a manner similar to the Haskell
implementation, we need some smart constructors for creating objects conveniently:

def id(x : Int) = new Id1 {val n= x}
def fan(x : Int) = new Fan1 {val n= x}
def beside(x : Circuit1, y : Circuit1) = new Beside1 {val c1 = x;val c2 = y}
def above(x : Circuit1, y : Circuit1) = new Above1 {val c1 = x;val c2 = y}
def stretch(x : Circuit1, xs : Int∗) = new Stretch1 {val ns= xs.toList;val c= x}

Now we are able to construct the circuit shown in Figure 2 in Scala:

val circuit= above(beside(fan(2), fan(2)),
above(stretch(fan(2), 2, 2),

beside(beside(id(1), fan(2)), id(1))))

Finally, calling circuit.width will return 4 as expected.
As this example illustrates, shallow embeddings and straightforward OO program-

ming are closely related. The syntax of the Scala code is not as concise as the Haskell
version due to some extra verbosity caused by trait declarations and smart constructors.
Nevertheless, the code is still quite compact and elegant, and the Scala implementation
has advantages in terms of modularity, as we shall see next.

3 Multiple interpretations in shallow embeddings

An often stated limitation of shallow embeddings is that multiple interpretations are
difficult. Gibbons and Wu [7] work around this problem by using tuples. However,

10:6

Weixin Zhang and Bruno C. d. S. Oliveira

their encoding needs to modify the original code and thus is non-modular. This
section illustrates how various types of interpretations can be modularly defined using
standard OOP mechanisms, and compares the result with Gibbons and Wu’s Haskell
implementations.

3.1 Simple multiple interpretations

A single interpretation may not be enough for realistic DSLs. For example, besides
width, we may want to have another interpretation that calculates the depth of a
circuit in Scans.

Multiple interpretations in Haskell Here is Gibbons and Wu [7]’s solution:

type Circuit2 = (Int, Int)
id2 n = (n, 0)
fan2 n = (n, 1)
above2 c1 c2 = (width c1, depth c1 + depth c2)
beside2 c1 c2 = (width c1 +width c2, depth c1 ‘max‘ depth c2)
stretch2 ns c = (sum ns, depth c)

width= fst
depth = snd

A tuple is used to accommodate multiple interpretations, and each interpretation is
defined as a projection on the tuple. However, this solution is not modular because
it relies on defining the two interpretations (width and depth) simultaneously. It is
not possible to reuse the independently defined width interpretation in Section 2.2.
Whenever a new interpretation is needed (e.g. depth), the original code has to be
revised: the arity of the tuple must be incremented and the new interpretation has to
be appended to each case.

Multiple interpretations in Scala In contrast, a Scala solution allows new interpreta-
tions to be introduced in a modular way:

trait Circuit2 extends Circuit1 {def depth : Int} // subtyping
trait Id2 extends Id1 with Circuit2 {def depth= 0}
trait Fan2 extends Fan1 with Circuit2 {def depth= 1}
trait Above2 extends Above1 with Circuit2 { // inheritance

override val c1, c2 : Circuit2 // covariant type-refinement
def depth= c1.depth+ c2.depth
}
trait Beside2 extends Beside1 with Circuit2 {

override val c1, c2 : Circuit2

def depth=Math.max (c1.depth, c2.depth)
}
trait Stretch2 extends Stretch1 with Circuit2 {

override val c : Circuit2

10:7

Shallow EDSLs and Object-Oriented Programming

def depth= c.depth
}

The encoding relies on three OOP abstraction mechanisms: inheritance, subtyping,
and type-refinement. Specifically, Circuit2 is a subtype of Circuit1, which extends the
semantic domain with a depth method. Concrete cases, for instance Above2, implement
Circuit2 by inheriting Above1 and implementing depth. Also, fields of type Circuit1

are covariantly refined as type Circuit2 to allow depth invocations. Importantly, all
definitions for width in Section 2.2 are modularly reused here.

3.2 Dependent interpretations

Dependent interpretations are a generalization of multiple interpretations. A depen-
dent interpretation does not only depend on itself but also on other interpretations,
which goes beyond simple compositional interpretations. An instance of dependent
interpretation is wellSized, which checks whether a circuit is constructed correctly.
The interpretation of wellSized is dependent because combinators like above use width
in their definitions.

Dependent interpretations in Haskell In Gibbons and Wu Haskell’s solution, depen-
dent interpretations are again defined with tuples in a non-modular way:

type Circuit3 = (Int, Bool)
id3 n = (n, True)
fan3 n = (n, True)
above3 c1 c2 = (width c1, wellSized c1 ∧ wellSized c2 ∧ width c1 ≡ width c2)
beside3 c1 c2 = (width c1 +width c2, wellSized c1 ∧ wellSized c2)
stretch3 ns c = (sum ns, wellSized c ∧ length ns≡ width c)

wellSized= snd

where width is called in the definition of wellSized for above3 and stretch3.

Dependent interpretations in Scala Once again, it is easy to model dependent inter-
pretation with a simple OO approach:

trait Circuit3 extends Circuit1 {def wellSized : Boolean} // dependency declaration
trait Id3 extends Id1 with Circuit3 {def wellSized= true}
trait Fan3 extends Fan1 with Circuit3 {def wellSized= true}
trait Above3 extends Above1 with Circuit3 {

override val c1, c2 : Circuit3

def wellSized=
c1.wellSized ∧ c2.wellSized ∧ c1.width≡ c2.width // dependency usage

}
trait Beside3 extends Beside1 with Circuit3 {

override val c1, c2 : Circuit3

def wellSized= c1.wellSized ∧ c2.wellSized

10:8

Weixin Zhang and Bruno C. d. S. Oliveira

}
trait Stretch3 extends Stretch1 with Circuit3 {

override val c : Circuit3

def wellSized= c.wellSized ∧ ns.length≡ c.width // dependency usage
}

Note that width and wellSized are defined separately. Essentially, it is sufficient to
define wellSized while knowing only the signature of width in the object interface. In
the definition of Above3, for example, it is possible not only to call wellSized, but also
width.

3.3 Context-sensitive interpretations

Interpretations may rely on some context. Consider an interpretation that simplifies
the representation of a circuit. A circuit can be divided horizontally into layers. Each
layer can be represented as a sequence of pairs (i, j), denoting the connection from
wire i to wire j. For instance, the circuit shown in Figure 2 has the following layout:

[[(0, 1), (2, 3)], [(1,3)], [(1,2)]]

The combinator stretch and beside will change the layout of a circuit. For example, if
two circuits are put side by side, all the indices of the right circuit will be increased by
the width of the left circuit. Hence the interpretation layout is also dependent, relying
on itself as well as width. An intuitive implementation of layout performs these changes
immediately to the affected circuit. A more efficient implementation accumulates
these changes and applies them all at once. Therefore, an accumulating parameter is
used to achieve this goal, which makes layout context-sensitive.

Context-sensitive interpretations in Haskell The following Haskell code implements
(non-modular) layout:

type Circuit4 = (Int, (Int→ Int)→ [[(Int, Int)]])
id4 n = (n,λf → [])
fan4 n = (n,λf → [[(f 0, f j) | j← [1 . . n− 1]]])
above4 c1 c2 = (width c1,λf → layout c1 f ++ layout c2 f)
beside4 c1 c2 = (width c1 +width c2,

λf → lzw (++) (layout c1 f) (layout c2 (f ◦ (width c1+))))
stretch4 ns c = (sum ns,λf → layout c (f ◦ pred ◦ (scanl1 (+) ns!!)))

lzw :: (a→ a→ a)→ [a]→ [a]→ [a]
lzw f [] ys = ys
lzw f xs [] = xs
lzw f (x : xs) (y : ys) = f x y : lzw f xs ys

layout= snd

The domain of layout is a function type (Int → Int) → [[(Int, Int)]], which takes a
transformation on wires and produces a layout. An anonymous function is hence de-
fined for each case, where f is the accumulating parameter. Note that f is accumulated

10:9

Shallow EDSLs and Object-Oriented Programming

in beside4 and stretch4 through function composition, propagated in above4, and finally
applied to wire connections in fan4. An auxiliary definition lzw (stands for “long zip
with”) zips two lists by applying the binary operator to elements of the same index
and appending the remaining elements from the longer list to the resulting list. By
calling layout on a circuit and supplying an identity function as the initial value of the
accumulating parameter, we will get the layout.

Context-sensitive interpretations in Scala Context-sensitive interpretations in Scala
are unproblematic as well:

trait Circuit4 extends Circuit1 {def layout(f : Int⇒ Int) : List[List[(Int, Int)]]}
trait Id4 extends Id1 with Circuit4 {def layout(f : Int⇒ Int) = List()}
trait Fan4 extends Fan1 with Circuit4 {

def layout(f : Int⇒ Int) = List(for(i← List.range(1, n)) yield(f (0), f (i)))
}
trait Above4 extends Above1 with Circuit4 {

override val c1, c2 : Circuit4

def layout(f : Int⇒ Int) = c1.layout(f) ++ c2.layout(f)
}
trait Beside4 extends Beside1 with Circuit4 {

override val c1, c2 : Circuit4

def layout(f : Int⇒ Int) =
lzw(c1.layout(f), c2.layout(f .compose(c1.width+)))(++)

}
trait Stretch4 extends Stretch1 with Circuit4 {

override val c : Circuit4

def layout(f : Int⇒ Int) = {
val vs= ns.scanLeft(0)(+).tail
c.layout(f .compose(vs()− 1))}

}
def lzw[A](xs : List[A], ys : List[A])(f :(A, A)⇒ A) : List[A] =(xs, ys)match {

case(Nil,) ⇒ ys
case(, Nil) ⇒ xs
case(x :: xs, y :: ys)⇒ f (x, y) :: lzw(xs, ys)(f)
}

The Scala version captures contexts as method arguments and the implementation
of layout is a direct translation from the Haskell version. There are some minor
syntax differences that need explanations. Firstly, in Fan4, a for comprehension is used
for producing a list of connections. Secondly, for simplicity, anonymous functions
are created without a parameter list. For example, inside Beside4, c1.width + is a
shorthand for i⇒ c1.width+ i, where the placeholder plays the role of the named
parameter i. Thirdly, function composition is achieved through the compose method
defined on function values, which has a reverse composition order as opposed to ◦ in
Haskell. Fourthly, lzw is implemented as a curried function, where the binary operator
f is moved to the end as a separate parameter list for facilitating type inference.

10:10

Weixin Zhang and Bruno C. d. S. Oliveira

3.4 An alternative encoding of modular interpretations

There is an alternative encoding of modular interpretations in Scala. For example, the
wellSized interpretation can be re-defined like this:

trait Circuit3 extends Circuit1 {def wellSized : Boolean}
trait Id3 extends Circuit3 {def wellSized= true}
...
trait Stretch3 extends Circuit3 {

val c : Circuit3;val ns : List[Int]
def wellSized= c.wellSized ∧ ns.length≡ c.width
}

where a concrete case like Id3 does not inherit Id1 and leaves the width method
unimplemented. Then, an extra step to combine wellSized and width is needed:

trait Id13 extends Id1 with Id3

...
trait Stretch13 extends Stretch1 with Stretch3

Compared to the previous encoding, this encoding is more modular because it
decouples wellSized with a particular implementation of width. However, more boiler-
plate is needed for combining interpretations. Moreover, it requires some support for
multiple-inheritance, which restricts the encoding itself from being applied to a wider
range of OO languages.

3.5 Modular language constructs

Besides new interpretations, new language constructs may be needed when a DSL
evolves. For example, in the case of Scans, we may want a rstretch (right stretch)
combinator which is similar to the stretch combinator but stretches a circuit oppositely.

New constructs in Haskell Shallow embeddings make the addition of rstretch easy by
defining a new function:

rstretch :: [Int]→ Circuit4→ Circuit4

rstretch ns c= stretch4 (1 : init ns) c ‘beside4‘ id4 (last ns− 1)

rstretch happens to be syntactic sugar over existing constructs. For non-sugar constructs,
a new function that implements all supported interpretations is needed.

New constructs in Scala Such simplicity of adding new constructs is retained in Scala.
Differently from the Haskell approach, there is a clear distinction between syntactic
sugar and ordinary constructs in Scala.
In Scala, syntactic sugar is defined as a smart constructor upon other smart con-

structors:

def rstretch(ns : List[Int], c : Circuit4) = stretch(1 :: ns.init, beside(c, id(ns.last− 1)))

10:11

Shallow EDSLs and Object-Oriented Programming

On the other hand, adding ordinary constructs is done by defining a new trait that
implements Circuit4. If we treated rstretch as an ordinary construct, its definition
would be:

trait RStretch extends Stretch4 {
override def layout(f : Int⇒ Int) = {

val vs= ns.scanLeft(ns.last− 1)(+).init
c.layout(f .compose(vs()))}

}

Such an implementation of RStretch illustrates another strength of the Scala ap-
proach regarding modularity. Note that RStretch does not implement Circuit4 directly.
Instead, it inherits Stretch4 and overrides the layout definition so as to reuse other
interpretations as well as field declarations from Stretch4. Inheritance and method
overriding enable partial reuse of an existing language construct implementation,
which is particularly useful for defining specialized constructs.

3.6 Discussion

Gibbons and Wu claim that in shallow embeddings new language constructs are easy
to add, but new interpretations are hard. It is possible to define multiple interpreta-
tions via tuples, “but this is still a bit clumsy: it entails revising existing code each time a
new interpretation is added, and wide tuples generally lack good language support” [7].
In other words, Haskell’s approach based on tuples is essentially non-modular. How-
ever, as our Scala code shows, using OOP mechanisms both language constructs
and interpretations are easy to add in shallow embeddings. Moreover, dependent
interpretations are possible too, which enables interpretations that may depend on
other modular interpretations and go beyond simple compositionality. The key point
is that procedural abstraction combined with OOP features (subtyping, inheritance,
and type-refinement) adds expressiveness over traditional procedural abstraction.
One worthy point about the Scala solution presented so far is that it is straightfor-

ward using OOP mechanisms, it uses only simple types, and dependent interpretations
are not a problem. Gibbons and Wu do discuss a number of more advanced tech-
niques [2, 21] that can solve some of the modularity problems. In their paper, they
show how to support modular depth and width (corresponding to Section 3.1) us-
ing the Finally Tagless [2] approach. This is possible because depth and width are
non-dependent. However they do not show how to modularize wellSized nor layout
(corresponding to Section 3.2 and 3.3, respectively). In Section 4 we revisit such Finally
Tagless encoding and improve it to allow dependent interpretations, inspired by the
OO solution presented in this section.

4 Modular interpretations in Haskell

Modular interpretations are also possible in Haskell via a variant of Church encodings
that uses type classes. The original technique is due to Hinze [9] and was shown to be

10:12

Weixin Zhang and Bruno C. d. S. Oliveira

modular and extensible by Oliveira, Hinze and Löh [16]. It has since been popularized
under the name Finally Tagless [2] in the context of embedded DSLs. The idea is to
use a type class to abstract over the signatures of constructs and define interpretations
as instances of that type class. This section recodes the Scans example and compares
the two modular implementations in Haskell and Scala.

4.1 Revisiting Scans

Here is the type class defined for Scans:

class Circuit c where
id :: Int→ c
fan :: Int→ c
above :: c→ c→ c
beside :: c→ c→ c
stretch :: [Int]→ c→ c

The signatures are the same as what Section 2.2 shows except that the semantic
domain is captured by a type parameter c. Interpretations such as width are then
defined as instances of Circuit:

newtype Width=Width {width :: Int}
instance Circuit Width where

id n =Width n
fan n =Width n
above c1 c2 =Width (width c1)
beside c1 c2 =Width (width c1 +width c2)
stretch ns c =Width (sum ns)

where c is instantiated as a record type Width. Instantiating the type parameter as
Width rather than Int avoids the conflict with the depth interpretation which also
produces integers.

Multiple interpretations Adding the depth interpretation can now be done in a mod-
ular manner similar to width:

newtype Depth= Depth {depth :: Int}
instance Circuit Depth where

id n = Depth 0
fan n = Depth 1
above c1 c2 = Depth (depth c1 + depth c2)
beside c1 c2 = Depth (depth c1 ‘max‘ depth c2)
stretch ns c = Depth (depth c)

10:13

Shallow EDSLs and Object-Oriented Programming

4.2 Modular dependent interpretations

Adding a modular dependent interpretation like wellSized is more challenging in the
Finally Tagless approach. However, inspired by the OO approach we can try to mimic
the OO mechanisms in Haskell to obtain similar benefits in Haskell. In what follows
we explain how to encode subtyping, inheritance, and type-refinement in Haskell and
how that encoding enables additional modularity benefits in Haskell.

Subtyping In the Scala solution subtyping avoids the explicit projections that are
needed in the Haskell solution presented in Section 3. We can obtain a similar benefit
in Haskell by encoding a subtyping relation on tuples in Haskell. We use the following
type class, which was introduced by Bahr and Hvitved [1], to express a subtyping
relation on tuples:

class a≺ b where
prj :: a→ b

instance a≺ a where
prj x = x

instance (a, b)≺ a where
prj= fst

instance (b≺ c)⇒ (a, b)≺ c where
prj= prj ◦ snd

In essence a type a is a subtype of a type b (expressed as a≺ b) if a has the same or
more tuple components as the type b. This subtyping relation is closely related to
the elaboration interpretation of intersection types proposed by Dunfield [5], where
Dunfield’s merge operator corresponds (via elaboration) to the tuple constructor and
projections are implicit and type-driven. The function prj simulates up-casting, which
converts a value of type a to a value of type b. The three overlapping instances define
the behavior of the projection function by searching for the type being projected in a
compound type.

Modular wellSized and encodings of inheritance and type-refinement Now, defining
wellSized modularly becomes possible:

newtype WellSized=WellSized {wellSized :: Bool}
instance (Circuit c, c≺Width)⇒ Circuit (WellSized, c)where

id n = (WellSized True, id n)
fan n = (WellSized True, fan n)
above c1 c2 = (WellSized (gwellSized c1 ∧ gwellSized c2 ∧ gwidth c1 ≡ gwidth c2)

, above (prj c1) (prj c2))
beside c1 c2 = (WellSized (gwellSized c1 ∧ gwellSized c2), beside (prj c1) (prj c2))
stretch ns c = (WellSized (gwellSized c ∧ length ns≡ gwidth c), stretch ns (prj c))

gwidth :: (c≺Width)⇒ c→ Int
gwidth= width ◦ prj

10:14

Weixin Zhang and Bruno C. d. S. Oliveira

gwellSized :: (c≺WellSized)⇒ c→ Bool
gwellSized= wellSized ◦ prj

Essentially, dependent interpretations are still defined using tuples. The dependency
on width is expressed by constraining the type parameter as c≺Width. Such constraint
allows us to simulate the type-refinement of fields in the Scala solution. Although the
implementation is modular, it requires some boilerplate. The reuse of width interpreta-
tion is achieved via delegation, where prj needs to be called on each subcircuit. Such
explicit delegation simulates the inheritance employed in the Scala solution. Also,
auxiliary definitions gwidth and gwellSized are necessary for projecting the desired
interpretations from the constrained type parameter.

4.3 Modular terms

As new interpretations may be added later, a problem is how to construct the term
that can be interpreted by those new interpretations without reconstruction. We show
how to do this for the circuit shown in Figure 2:

circuit :: Circuit c⇒ c
circuit= (fan 2 ‘beside‘ fan 2) ‘above‘

stretch [2,2] (fan 2) ‘above‘
(id 1 ‘beside‘ fan 2 ‘beside‘ id 1)

Here, circuit is a generic circuit that is not tied to any interpretation. When interpreting
circuit, its type must be instantiated:

>width (circuit :: Width)
4
> depth (circuit :: Depth)
3
> gwellSized (circuit :: (WellSized, Width))
True

At user-site, circuit must be annotated with the target semantic domain so that an
appropriate type class instance for interpretation can be chosen.

Syntax extensions This solution also allows us to modularly extend [16] Scans with
more language constructs such as rstretch:

class Circuit c⇒ ExtendedCircuit c where
rstretch :: [Int]→ c→ c

Existing interpretations can be modularly extended to handle rstretch:

instance ExtendedCircuit Width where
rstretch= stretch

Existing circuits can also be reused for constructing circuits in extended Scans:

circuit2 :: ExtendedCircuit c⇒ c
circuit2 = rstretch [2, 2,2, 2] circuit

10:15

Shallow EDSLs and Object-Oriented Programming

Table 1 Language features needed for modular interpretations: Scala vs. Haskell.

Goal Scala Haskell

Multiple interpretation Trait & Type-refinement Type class
Interpretation reuse Inheritance Delegation
Dependency declaration Subtyping Tuples & Type constraints

4.4 Comparing modular implementations using Scala and Haskell

Although both the Scala and Haskell solutions are able to model modular depen-
dent interpretations, they use a different set of language features. Table 1 compares
the language features needed by Scala and Haskell. The Scala approach relies on
built-in features. In particular, subtyping, inheritance (mixin composition) and type-
refinement are all built-in. This makes it quite natural to program the solutions in
Scala, without even needing any form of parametric polymorphism. In contrast, the
Haskell solution does not have such built-in support for OO features. Subtyping and
type-refinement need to be encoded/simulated using parametric polymorphism and
type classes. Inheritance is simulated by explicit delegations. The Haskell encoding is
arguably conceptually more difficult to understand and use, but it is still quite simple.
One interesting feature that is supported in Haskell is the ability to encode modular
terms. This relies on the fact that the constructors are overloaded. The Scala solution
presented so far does not allow such overloading, so code using constructors is tied
with a specific interpretation. In the next section we will see a final refinement of the
Scala solution that enables modular terms, also by using overloaded constructors.

5 Modular terms in Scala

One advantage of the Finally Tagless approach over our Scala approach presented
so far is that terms can be constructed modularly without tying those terms to any
interpretation. Modular terms are also possible by combining our Scala approach
with Object Algebras [15], which employ a technique similar to Finally Tagless in the
context of OOP. Differently from the Haskell solution presented in Section 4, the Scala
approach only employs parametric polymorphism to overload the constructors. Both
inheritance and type-refinement do not need to be simulated or encoded.

Object Algebra interface To capture the generic interface of the constructors we
define an abstract factory (or Object Algebra interface) for circuits similar to the type
class version shown in Section 4.1:

trait Circuit[C] {
def id(x : Int) : C
def fan(x : Int) : C
def above(x : C, y : C) : C
def beside(x : C, y : C) : C

10:16

Weixin Zhang and Bruno C. d. S. Oliveira

def stretch(x : C, xs : Int∗) : C
}

which exposes factory methods for each circuit construct supported by Scans.

Abstract terms Modular terms can be constructed via the abstract factory. For exam-
ple, the circuit shown in Figure 2 is built as:

def circuit[C](f : Circuit[C]) =
f .above(f .beside(f .fan(2), f .fan(2)),

f .above(f .stretch(f .fan(2), 2, 2),
f .beside(f .beside(f .id(1), f .fan(2)), f .id(1))))

Similarly, circuit is a generic method that takes a Circuit instance and builds a circuit
through that instance. With Scala the definition of circuit can be even simpler: we can
avoid prefixing “f .” everywhere by importing f . Nevertheless, the definition shown
here is more language-independent.

Object Algebras We need concrete factories (Object Algebras) that implement Circuit
to actually invoke circuit. Here is a concrete factory that produces Circuit1:

trait Factory1 extends Circuit[Circuit1] {...}

where the omitted code is identical to the smart constructors presented in Section 2.2.
Concrete factories for other circuit implementations can be defined in a similar way
by instantiating the type parameter Circuit accordingly:

trait Factory4 extends Circuit[Circuit4] {...}

Concrete terms By supplying concrete factories to abstract terms, we obtain concrete
terms that can be interpreted differently:

circuit(new Factory1 { }).width //4
circuit(new Factory4 { }).layout {x⇒ x}//List(List((0,1),(2,3)),List((1,3)),List((1,2)))

Modular extensions Both factories and terms can be modularly reused when the DSL
is extended with new language constructs. To support right stretch for Scans, we
first extend the abstract factory with new factory methods:

trait ExtendedCircuit[C] extends Circuit[C] {def rstretch(x : C, xs : Int∗) : C}

We can also build extended concrete factories upon existing concrete factories:

trait ExtendedFactory4 extends ExtendedCircuit[Circuit4]with Factory4 {
def rstretch(x : Circuit4, xs : Int∗) = new RStretch {val c= x;val ns= xs.toList}
}

Furthermore, previously defined terms can be reused in constructing extended terms:

def circuit2 [C](f : ExtendedCircuit[C]) = f .rstretch(circuit(f), 2, 2, 2, 2)

10:17

Shallow EDSLs and Object-Oriented Programming

6 Case study: a shallow EDSL for SQL queries

A common motivation for using deep embeddings is performance. Deep embeddings
enable complex AST transformations, which is useful to implement optimizations
that improve the performance. An alternative way to obtain performance is to use
staging frameworks, such as Lightweight Modular Staging (LMS) [19]. As illustrated
by Rompf and Amin [18] staging can preclude the need for AST transformations for a
realistic query DSL. To further illustrate the applicability of shallow OO embeddings,
we refactored Rompf and Amin’s deep, external DSL implementation to make it more
modular, shallow and embedded. The shallow DSL retains the performance of the
original deep DSL by generating the same code.

6.1 Overview

SQL is the best-known DSL for data queries. Rompf and Amin [18] present a SQL query
processor implementation in Scala. Their implementation is an external DSL, which
first parses a SQL query into a relational algebra AST and then executes the query in
terms of that AST. Based on the LMS framework [19], the SQL compilers are nearly
as simple as an interpreter while having performance comparable to hand-written
code. The implementation uses deep embedding techniques such as algebraic data
types (case classes in Scala) and pattern matching for representing and interpreting
ASTs. These techniques are a natural choice as multiple interpretations are needed for
supporting different backends. But problems arise when the implementation evolves
with new language constructs. All existing interpretations have to be modified for
dealing with these new cases, suffering from the Expression Problem.
We refactored Rompf and Amin [18]’s implementation into a shallow EDSL for the

following reasons. Firstly, multiple interpretations are no longer a problem for our
shallow embedding technique. Secondly, the original implementation contains no
hand-coded AST transformations. Thirdly, it is common to embed SQL into a general
purpose language.
To illustrate our shallow EDSL, suppose there is a data file talks.csv that contains a

list of talks with time, title and room. We can write several sample queries on this file
with our EDSL. A simple query that lists all items in talks.csv is:

def q0 = FROM ("talks.csv")

Another query that finds all talks at 9 am with their room and title selected is:

def q1 = q0 WHERE ‘time=== "09:00 AM" SELECT (‘room, ‘title)

Yet another relatively complex query to find all conflicting talks that happen at the
same time in the same room with different titles is:

def q2 = q0 SELECT (‘time, ‘room, ‘title AS ‘title1) JOIN
(q0 SELECT (‘time, ‘room, ‘title AS ‘title2))WHERE
‘title1<> ‘title2

10:18

Weixin Zhang and Bruno C. d. S. Oliveira

Compared to an external implementation, our embedded implementation has the
benefit of reusing the mechanisms provided by the host language for free. As illustrated
by the sample queries above, we are able to reuse common subqueries (q0) in building
complex queries (q1 and q2). This improves the readability and modularity of the
embedded programs.

6.2 Embedded syntax

Thanks to the good support for EDSLs in Scala, we can precisely model the syntax of
SQL. The syntax of our EDSL is close to that of LINQ [13], where select is an optional,
terminating clause of a query. We employ well-established OO and Scala techniques to
simulate the syntax of SQL queries in our shallow EDSL implementation. Specifically,
we use the Pimp My Library pattern [14] for lifting field names and literals implicitly.
For the syntax of combinators such as where and join, we adopt a fluent interface style.
Fluent interfaces enable writing something like “FROM (...).WHERE(...).SELECT (...)”.
Scala’s infix notation further omits “.” in method chains. Other famous embedded SQL
implementations in OOP such as LINQ [13] also adopt similar techniques in designing
their syntax. The syntax is implemented in a pluggable way, in the sense that the
semantics is decoupled from the syntax. Details of the syntax implementation are
beyond the scope of this pearl. The interested reader can consult the companion code.
Beneath the surface syntax, a relational algebra operator structure is constructed.

For example, we will get the following operator structure for q1:

Project(Schema("room", "title"),
Filter(Eq(Field("time"), Value("09:00 AM")),

Scan("talks.csv")))

6.3 A relational algebra compiler

A SQL query can be represented by a relational algebra expression. The basic interface
of operators is modeled as follows:

trait Operator {
def resultSchema : Schema
def execOp(yld : Record⇒ Unit) : Unit
}

Two interpretations, resultSchema and execOp, need to be implemented for each con-
crete operator: the former collects a schema for projection; the latter executes actions
to the records of the table. Very much like the interpretation layout discussed in Sec-
tion 3.3, execOp is both context-sensitive and dependent: it takes a callback yld and
accumulates what the operator does to records into yld and uses resultSchema in
displaying execution results. In our implementation execOp is indeed introduced as
an extension just like layout. Here we merge the two interpretations for conciseness
of presentation. Some core concrete relational algebra operators are given below:

10:19

Shallow EDSLs and Object-Oriented Programming

trait Project extends Operator {
val out, in : Schema;val op : Operator
def resultSchema= out
def execOp(yld : Record⇒ Unit) = op.execOp {rec⇒ yld(Record(rec(in), out))}
}
trait Join extends Operator {

val op1, op2 : Operator
def resultSchema= op1.resultSchema++ op2.resultSchema
def execOp(yld : Record⇒ Unit) =

op1.execOp {rec1⇒
op2.execOp {rec2⇒

val keys= rec1.schema intersect rec2.schema
if(rec1 (keys)≡ rec2 (keys))

yld(Record(rec1.fields++ rec2.fields, rec1.schema++ rec2.schema))}}
}
trait Filter extends Operator {

val pred : Predicate;val op : Operator
def resultSchema= op.resultSchema
def execOp(yld : Record⇒ Unit) = op.execOp {rec⇒ if(pred.eval(rec)) yld(rec)}
}

Project rearranges the fields of a record; Join matches a record against another and
combines the two records if their common fields share the same values; Filter keeps a
record only when it meets a certain predicate. There are also two utility operators,
Print and Scan, for processing inputs and outputs, whose definitions are omitted for
space reasons.

From an interpreter to a compiler The query processor presented so far is elegant but
unfortunately slow. To achieve better performance, Rompf and Amin extend the SQL
processor in various ways. One direction is to turn the slow query interpreter into a
fast query compiler by generating specialized low-level code for a given query. With
the help of the LMS framework, this task becomes rather easy. LMS provides a type
constructor Rep for annotating computations that are to be performed in the next
stage. The signature of the staged execOp is:

def execOp(yld : Record⇒ Rep[Unit]) : Rep[Unit]

where Unit is lifted as Rep [Unit] for delaying the actions on records to the gener-
ated code. Two staged versions of execOp are introduced for generating Scala and
C code respectively. By using the technique presented in Section 3, they are added
modularly with existing interpretations such as resultSchema reused. The implemen-
tation of staged execOp is similar to the unstaged counterpart except for minor API
differences between staged and unstaged types. Hence the simplicity of the imple-
mentation remains. At the same time, dramatic speedups are obtained by switching
from interpretation to compilation.

10:20

Weixin Zhang and Bruno C. d. S. Oliveira

Table 2 SLOC for original (Deep) and refactored (Shallow) versions.

Source Functionality Deep Shallow

query_unstaged SQL interpreter 83 98
query_staged SQL to Scala compiler 179 194
query_optc SQL to C compiler 245 262

Language extensions Rompf and Amin also extend the query processor with two new
language constructs, hash joins and aggregates. The introduction of these constructs
is done in a modular manner with our approach:

trait Group extends Operator {
val keys, agg : Schema;val op : Operator
def resultSchema= keys++ agg
def execOp(yld : Record⇒ Unit) {...}
}
trait HashJoin extends Join {

override def execOp(yld : Record⇒ Unit) = {
val keys= op1.resultSchema intersect op2.resultSchema
val hm= new HashMapBuffer(keys, op1.resultSchema)
op1.execOp {rec1⇒

hm(rec1 (keys)) += rec1.fields}
op2.execOp {rec2⇒

hm(rec2 (keys)) foreach {rec1⇒
yld(Record(rec1.fields++ rec2.fields, rec1.schema++ rec2.schema))}}}

}

Group supports SQL’s group by clause, which partitions records and sums up specified
fields from the composed operator. HashJoin is a replacement for Join, which uses
a hash-based implementation instead of naive nested loops. With inheritance and
method overriding, we are able to reuse the field declarations and other interpretations
from Join.

6.4 Evaluation

We evaluate our refactored shallow implementation with respect to the original deep
implementation. Both implementations of the DSL (the original and our refactored
version) generate the same code: thus the performance of the two implementations
is similar. Hence we compare the two implementations only in terms of the source
lines of code (SLOC). We exclude the code related to surface syntax for the fairness
of comparison because our refactored version uses embedded syntax whereas the
original uses a parser. As seen in Table 2, our shallow approach takes a dozen more
lines of code than the original deep approach for each version of SQL processor. The
SLOC expansion is attributed to the fact that functional decomposition (case classes) is
more compact than object-oriented decomposition in Scala. Nevertheless, our shallow
approach makes it easier to add new language constructs.

10:21

Shallow EDSLs and Object-Oriented Programming

7 Conclusion

This programming pearl reveals the close correspondence between OOP and shallow
embeddings: the essence of both is procedural abstraction. It also showed how OOP
increases the modularity of shallow EDSLs. OOP abstractions, including subtyping,
inheritance, and type-refinement, bring extra modularity to traditional procedural
abstraction. As a result, multiple interpretations are allowed to co-exist in shallow
embeddings. Moreover, the multiple interpretations can be dependent: an interpreta-
tion can depend not only on itself but also on other modular interpretations. Thus
the approach presented here allows us to go beyond simple compositionality, where
interpretations can only depend on themselves.
It has always been a hard choice between shallow and deep embeddings when

designing an EDSL: there are some tradeoffs between the two styles. Deep embeddings
trade some simplicity and the ability to add new language constructs for some extra
power. This extra power enables multiple interpretations, as well as complex AST
transformations. As this pearl shows, in languages with OOP mechanisms, multiple
(possibly dependent) interpretations are still easy to do with shallow embeddings
and the full benefits of an extended form of compositionality still apply. Therefore
the motivation to employ deep embeddings becomes weaker than before and mostly
reduced to the need for AST transformations. Prior work on the Finally Tagless [12]
and Object Algebras [24] approaches already show that AST transformations are still
possible in those styles. However this requires some extra machinery, and the line
between shallow and deep embeddings becomes quite blurry at that point.
Finally, this work shows a combination of two previously studied solutions to the

Expression Problem in OO: the extensible interpreter pattern proposed by Wang and
Oliveira [23] and Object Algebras [15]. The combination exploits the advantages of
each of the approaches to overcome the limitations of each approach individually. In
the original approach by Wang and Oliveira modular terms are hard to model, whereas
with Object Algebras a difficulty is modeling modular dependent operations. A closely
related technique is employed by Cazzola and Vacchi [3], although in the context
of external DSLs. Their technique is slightly different with respect to the extensible
interpreter pattern. Essentially while our approach is purely based on subtyping and
type-refinement, they use generic types instead to simulate the type-refinement. While
the focus of our work is embedded DSLs, the techniques discussed here are useful for
other applications, including external DSLs as Cazzola and Vacchi show.

Acknowledgements We thank Willam R. Cook, Jeremy Gibbons, Ralf Hinze, Martin
Erwig, and the anonymous reviewers of GPCE, ICFP, JFP, and Programming for their
valuable comments that significantly improved this work. This work is based on the
first author’s master thesis [25] and has been funded by Hong Kong Research Grant
Council projects number 17210617 and 17258816.

10:22

Weixin Zhang and Bruno C. d. S. Oliveira

References

[1] Patrick Bahr and Tom Hvitved. Compositional Data Types. In Proceedings of the
Seventh ACM SIGPLAN Workshop on Generic Programming, WGP ’11, pages 83–94,
2011. doi:10.1145/2036918.2036930.

[2] Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. Finally Tagless, Partially
Evaluated: Tagless Staged Interpreters for Simpler Typed Languages. Journal of
Functional Programming, 19(05):509–543, 2009. doi:10.1017/S0956796809007205.

[3] Walter Cazzola and Edoardo Vacchi. Language Components for Modular DSLs
Using Traits. Computer Languages, Systems & Structures, 45:16–34, 2016. doi:
10.1016/j.cl.2015.12.001.

[4] William R. Cook. On Understanding Data Abstraction, Revisited. In Proceedings
of the 24th ACM SIGPLAN Conference on Object Oriented Programming Systems
Languages and Applications, OOPSLA ’09, pages 557–572, 2009. doi:10.1145/
1639949.1640133.

[5] Joshua Dunfield. Elaborating Intersection and Union Types. Journal of Functional
Programming, 24(2-3):133–165, 2014. doi:10.1017/S0956796813000270.

[6] Martin Erwig and Eric Walkingshaw. Semantics-Driven DSL Design. In Formal
and Practical Aspects of Domain-Specific Languages: Recent Developments, pages
56–80. 2012. doi:10.4018/978-1-4666-2092-6.ch003.

[7] Jeremy Gibbons and Nicolas Wu. Folding Domain-Specific Languages: Deep and
Shallow Embeddings (Functional Pearl). In Proceedings of the 19th ACM SIGPLAN
International Conference on Functional Programming, ICFP ’14, pages 339–347,
2014. doi:10.1145/2628136.2628138.

[8] Ralf Hinze. An Algebra of Scans. In Mathematics of Program Construction, pages
186–210, 2004. doi:10.1007/978-3-540-27764-4_11.

[9] Ralf Hinze. Generics for the Masses. Journal of Functional Programming, 16(4-
5):451–483, 2006. doi:10.1017/S0956796806006022.

[10] Paul Hudak. Modular Domain Specific Languages and Tools. In Proceedings.
Fifth International Conference on Software Reuse, pages 134–142, 1998. doi:10.
1109/ICSR.1998.685738.

[11] Vojin Jovanovic, Amir Shaikhha, Sandro Stucki, Vladimir Nikolaev, Christoph
Koch, and Martin Odersky. Yin-Yang: Concealing the Deep Embedding of DSLs.
In Proceedings of the 2014 International Conference on Generative Programming:
Concepts and Experiences, GPCE 2014, pages 73–82, 2014. doi:10.1145/2658761.
2658771.

[12] Oleg Kiselyov. Typed Tagless Final Interpreters. In Generic and Indexed Program-
ming, pages 130–174, 2012. doi:10.1007/978-3-642-32202-0_3.

[13] Erik Meijer, Brian Beckman, and Gavin Bierman. LINQ: Reconciling Object,
Relations and XML in the .NET Framework. In Proceedings of the 2006 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’06, pages
706–706, 2006. doi:10.1145/1142473.1142552.

10:23

https://doi.org/10.1145/2036918.2036930
https://doi.org/10.1017/S0956796809007205
https://doi.org/10.1016/j.cl.2015.12.001
https://doi.org/10.1016/j.cl.2015.12.001
https://doi.org/10.1145/1639949.1640133
https://doi.org/10.1145/1639949.1640133
https://doi.org/10.1017/S0956796813000270
https://doi.org/10.4018/978-1-4666-2092-6.ch003
https://doi.org/10.1145/2628136.2628138
https://doi.org/10.1007/978-3-540-27764-4_11
https://doi.org/10.1017/S0956796806006022
https://doi.org/10.1109/ICSR.1998.685738
https://doi.org/10.1109/ICSR.1998.685738
https://doi.org/10.1145/2658761.2658771
https://doi.org/10.1145/2658761.2658771
https://doi.org/10.1007/978-3-642-32202-0_3
https://doi.org/10.1145/1142473.1142552

Shallow EDSLs and Object-Oriented Programming

[14] Martin Odersky. Pimp My Library, 2006. Last accessed on 2019-01-29. URL:
http://www.artima.com/weblogs/viewpost.jsp?thread=179766.

[15] Bruno C. d. S. Oliveira and William R. Cook. Extensibility for the Masses:
Practical Extensibility with Object Algebras. In Proceedings of the 26th European
Conference on Object-Oriented Programming, ECOOP ’12, pages 2–27, 2012. doi:
10.1007/978-3-642-31057-7_2.

[16] Bruno C. d. S. Oliveira, Ralf Hinze, and Andres Löh. Extensible and Modular
Generics for the Masses. In Trends in Functional Programming, pages 199–216,
2006.

[17] John C. Reynolds. User-defined Types and Procedural Data Structures as Comple-
mentary Approaches to Type Abstraction, pages 309–317. 1978. doi:10.1007/978-1-
4612-6315-9_22.

[18] Tiark Rompf and Nada Amin. Functional Pearl: A SQL to C Compiler in 500 Lines
of Code. In Proceedings of the 20th ACM SIGPLAN International Conference on
Functional Programming, ICFP 2015, pages 2–9, 2015. doi:10.1145/2784731.2784760.

[19] Tiark Rompf and Martin Odersky. Lightweight Modular Staging: A Pragmatic
Approach to Runtime Code Generation and Compiled DSLs. In Proceedings of
the Ninth International Conference on Generative Programming and Component
Engineering, GPCE ’10, pages 127–136, 2010. doi:10.1145/1868294.1868314.

[20] Josef Svenningsson and Emil Axelsson. Combining Deep and Shallow Embedding
for EDSL. In Trends in Functional Programming, pages 21–36, 2012. doi:10.1007/
978-3-642-40447-4_2.

[21] Wouter Swierstra. Data Types à la Carte. Journal of Functional Programming,
18(04):423–436, 2008. doi:10.1017/S0956796808006758.

[22] Philip Wadler. The Expression Problem. Note to Java Genericity mailing list, Nov.
1998.

[23] Yanlin Wang and Bruno C. d. S. Oliveira. The Expression Problem, Trivially! In
Proceedings of the 15th International Conference on Modularity, MODULARITY
2016, pages 37–41, 2016. doi:10.1145/2889443.2889448.

[24] Haoyuan Zhang, Zewei Chu, Bruno C. d. S. Oliveira, and Tijs van der Storm. Scrap
Your Boilerplate with Object Algebras. In Proceedings of the 2015 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2015, pages 127–146, 2015. doi:10.1145/2814270.2814279.

[25] Weixin Zhang. Extensible Domain-Specific Languages in Object-Oriented Pro-
gramming. HKU Theses Online (HKUTO), 2017.

10:24

http://www.artima.com/weblogs/viewpost.jsp?thread=179766
https://doi.org/10.1007/978-3-642-31057-7_2
https://doi.org/10.1007/978-3-642-31057-7_2
https://doi.org/10.1007/978-1-4612-6315-9_22
https://doi.org/10.1007/978-1-4612-6315-9_22
https://doi.org/10.1145/2784731.2784760
https://doi.org/10.1145/1868294.1868314
https://doi.org/10.1007/978-3-642-40447-4_2
https://doi.org/10.1007/978-3-642-40447-4_2
https://doi.org/10.1017/S0956796808006758
https://doi.org/10.1145/2889443.2889448
https://doi.org/10.1145/2814270.2814279

Weixin Zhang and Bruno C. d. S. Oliveira

About the authors

Weixin Zhang is a PhD candidate at the University of Hong Kong.
His current research interests are centered around modularity,
domain-specific languages and generative programming. You can
contact him at wxzhang2@cs.hku.hk and find further information
at https://wxzh.github.io.

Bruno C. d. S. Oliveira is an assistant professor at the University
of Hong Kong. His research interests are centered around program-
ming languages. His existing research is mainly focused on type
systems for modularity and the combination of Object-Oriented
and Functional Paradigms. You can contact him at bruno@cs.hku.
hk and find further information at https://i.cs.hku.hk/~bruno.

10:25

mailto:wxzhang2@cs.hku.hk
https://wxzh.github.io
mailto:bruno@cs.hku.hk
mailto:bruno@cs.hku.hk
https://i.cs.hku.hk/~bruno

	1 Introduction
	2 Shallow object-oriented programming
	2.1 Scans: A DSL for parallel prefix circuits
	2.2 Shallow embeddings and OOP

	3 Multiple interpretations in shallow embeddings
	3.1 Simple multiple interpretations
	3.2 Dependent interpretations
	3.3 Context-sensitive interpretations
	3.4 An alternative encoding of modular interpretations
	3.5 Modular language constructs
	3.6 Discussion

	4 Modular interpretations in Haskell
	4.1 Revisiting Scans
	4.2 Modular dependent interpretations
	4.3 Modular terms
	4.4 Comparing modular implementations using Scala and Haskell

	5 Modular terms in Scala
	6 Case study: a shallow EDSL for SQL queries
	6.1 Overview
	6.2 Embedded syntax
	6.3 A relational algebra compiler
	6.4 Evaluation

	7 Conclusion
	About the authors

