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Modularity is a key concern in programming. However, programming languages remain limited in terms
of modularity and extensibility. Small canonical problems, such as the Expression Problem (EP), illustrate
some of the basic issues: the dilemma between choosing one kind of extensibility over another one in most
programming languages. Other problems, such as how to express dependencies in a modular way, add up to
the basic issues and remain a significant challenge.

This paper presents a new statically typedmodular programming style called Compositional Programming. In
Compositional Programming, there is no EP: it is easy to get extensibility in multiple dimensions (i.e. it is easy
to add new variants as well as new operations). Compositional Programming offers an alternative way to model
data structures that differs from both algebraic datatypes in functional programming and conventional OOP
class hierarchies. We introduce four key concepts for Compositional Programming: compositional interfaces,
compositional traits, method patterns, and nested trait composition. Altogether these concepts allow us to
naturally solve challenges such as the Expression Problem, model attribute-grammar-like programs, and
generally deal with modular programs with complex dependencies. We present a language design, called CP,
which is proved to be type-safe, together with several examples and three case studies.
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1 INTRODUCTION

Modularity is a key concern in programming. Programming languages support the development
of modular programs by providing language constructs for modularization. For instance, many
languages support some notion of modules that can group various kinds of definitions and functions,
and can be separately compiled. On a smaller scale, most Object-Oriented Programming (OOP)
languages support classes which can also be separately defined, compiled, and reused by subclassing.
An important aspect of programming is how to define data structures and the operations over

those data structures. Different language designs offer different mechanisms for this purpose. OOP
languages model data structures using class hierarchies and techniques such as the Composite
pattern [Gamma et al. 1994]. Typically, there is an interface that specifies all the operations (methods)
of interest for the data structure. Multiple classes implement different types of nodes in the data
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structure, supporting all the operations in the interface. Many functional languages employ algebraic
datatypes [Burstall et al. 1981] to model data structures, and use functions (typically defined by
pattern matching) to model the operations over those data structures. For example, in Haskell, we
can model a simple form of arithmetic expressions and their evaluation as:

data Exp where -- Datatype definition called Exp

Lit :: Int -> Exp -- Constructor

Add :: Exp -> Exp -> Exp -- Constructor

eval :: Exp -> Int -- Evaluation function defined by pattern matching

eval (Lit n) = n

eval (Add e1 e2) = eval e1 + eval e2

The datatype definition Exp defines a (binary) tree structure that models arithmetic expressions with
two constructors for numeric literals (Lit) and additions (Add). The eval function, defines evaluation
by pattern matching over values of Exp and calling itself recursively on the child nodes.

As widely acknowledged by the Expression Problem (EP) [Wadler 1998], both algebraic datatypes
and class hierarchies have modularity problems. With algebraic datatypes and pattern matching,
adding new operations is easy, but adding constructors is hard. Conversely, the OOP approach
makes it easy to add new classes, but makes it hard to add new methods at the same time.
This paper presents a new statically typed modular programming style called Compositional

Programming. In Compositional Programming, there is no EP: it is easy to get extensibility in
two dimensions (i.e. it is easy to add new constructors as well as new operations). Compositional
Programming offers an alternative way to model data structures that differs from both algebraic
datatypes in functional programming and conventional OOP class hierarchies. Thus, composi-
tional Programming can be viewed as an alternative programming paradigm, since programs are
structured differently from traditional FP and OOP. The key ideas of Compositional Programming
are implemented in a new programming language called CP. For example, the code for modeling
arithmetic expressions can be expressed in CP as:

type ExpSig<Exp> = { -- Compositional interface for expressions with a sort Exp

Lit : Int -> Exp; -- Constructor (returns the sort Exp)

Add : Exp -> Exp -> Exp; -- Constructor (returns the sort Exp)

};

type Eval = { eval : Int }; -- Concrete type for evaluation (instantiates Exp)

evalNum = trait implements ExpSig<Eval> => { -- Compositional trait for evaluation

(Lit n).eval = n; -- Definition using a method pattern

(Add e1 e2).eval = e1.eval + e2.eval; -- Definition using a method pattern

};

In the CP code above, the definition ExpSig<Exp> (a compositional interface) plays a similar role to
the algebraic datatype Exp in functional languages. The special type parameter Exp in ExpSig<Exp>

is called a sort, and models types that represent datatypes in CP. All constructors in CP must have
a return type which is a sort. Like in functional languages, in CP adding new operations is easy
using a special form of traits [Schärli et al. 2003]. Unlike functional programming, where adding
new constructors to Exp is difficult and non-modular, in CP the addition of new constructors is
also easy. We will later illustrate the modularity of CP in detail. In essence, there are four new key
concepts in CP:
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• Compositional interfaces can be viewed as an extension of traditional OOP interfaces,
such as those found in languages like Java or Scala. In addition to declaring method signatures,
compositional interfaces also allow specification of the constructor signatures. In turn, this
enables programming the construction of objects against an interface, instead of a concrete
implementation. Compositional interfaces can be parametrized by sorts (such as Exp), which
abstract over concrete datatypes, and are used to determine which kind of object is built.

• Compositional traits extend traditional traits [Schärli et al. 2003] and first-class traits [Bi
and Oliveira 2018]. Compositional traits allow not only the definition of virtual methods but
also the definition of virtual constructors. They also allow nested traits, which are used to
support trait families. Trait families are akin to class families in family polymorphism [Ernst
2001]. Both virtual constructor definitions and nested traits are not possible with Schärli et al.
[2003]’s traits and previous models of first-class traits.

• Method patterns, such as (Lit n).eval, provide a lightweight syntax to define method
implementations for nested traits, which arise from virtual constructors. This enables compact
method definitions for trait families, which resembles programs defined by pattern matching
in functional languages, and programs written with attributes in attribute grammars [Knuth
1968, 1990].

• Nested trait composition is the mechanism used to compose compositional traits. The
foundations for this mechanism originate from nested composition, which has been inves-
tigated in recent calculi with disjoint intersection types and polymorphism [Alpuim et al.
2017; Bi et al. 2018, 2019; Oliveira et al. 2016]. Our work shows how nested composition can
smoothly be integrated into compositional traits. Nested trait composition plays a similar
role to traditional class inheritance, but generalizes to the composition of nested traits. Thus
it enables a form of inheritance of whole hierarchies, similar to the forms of composition
found in family polymorphism. Nested trait composition is associative and commutative [Bi
et al. 2018], just like the composition for traditional traits [Schärli et al. 2003].

Altogether, these concepts allow us to solve various challenges naturally. For instance, they enable
a very natural and simple solution to the EP. More interestingly, Compositional Programming can
deal with harder modularity challenges, such as modeling interesting classes of attribute grammars
or more complex programs, which often contain non-trivial dependencies.
Dependencies are an important concern for modularity: the weaker dependencies between

program parts are, the more modular a program is. Realistic programs will depend on some other
program parts. A common case of program dependencies is using library functions or functions
defined in other parts of the program. A programmay also depend on existing types and constructors.
For instance, in OOP, when using a class defined in another part of the program, we may need to
refer to the class type and the constructor of the class to create an instance of the class. Unfortunately,
in most languages, most dependencies introduce strong coupling between various program parts.
A simple example of a program with a dependency that introduces strong coupling in functional
programming would be a simple pretty-printer for expressions, which depends on eval. In a
functional language, it is straightforward to write such a program in a non-modular way:
printChild :: Exp -> String

printChild (Lit n) = show n

printChild (Add e1 e2) = if (eval e2 == 0) -- dependency on eval

then printChild e1

else "(" ++ printChild e1 ++ "+" ++ printChild e2 ")"

Such definition of printChild is tightly coupled with the concrete implementation of eval. Moreover,
both eval and printChild are non-extensible. For modularization to be effective, it is desirable to
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have weak dependencies. In a modular setting, the definition of printChild should depend only
on the interface of eval, without sticking to a particular implementation. Also, both eval and
printChild should be open to the addition of new cases.

In Compositional Programming, programs with weak dependencies can be expressed concisely,
in a statically typed and safe way, and without giving up modularity. More generally, Compositional
Programming offers a range of mechanisms to deal with modular programs with various complex

forms of dependencies. In many existing solutions to the EP, dealing with such dependencies in a
modular way is highly non-trivial or simply not possible. There are various design patterns [Gamma
et al. 1994] partly addressing the problem of strong coupling by using existing programming
language features. For example, the Abstract Factory pattern [Gamma et al. 1994], Object Alge-
bras [Oliveira and Cook 2012], Polymorphic Embeddings [Hofer et al. 2008], Finally Tagless [Carette
et al. 2009], Datatypes à la Carte [Swierstra 2008] or the Cake Pattern [Odersky and Zenger 2005]
provide ways to abstract over the construction of objects or datatypes. However, such patterns often
result in heavily parametrized and boilerplate code. Moreover, the lack of sufficiently powerful
composition mechanisms and mechanisms to express weaker forms of dependencies makes it hard
to deal with dependencies in such design patterns [Oliveira et al. 2013; Zhang and Oliveira 2017].

The CP language is inspired by the SEDEL language [Bi and Oliveira 2018]. The main novelties
over SEDEL are the four compositional programming mechanisms listed above: compositional
interfaces, compositional traits, method patterns, and nested trait composition. Compositional
Programming is partly inspired by generalized Object Algebras [Oliveira et al. 2013], but the built-in
language mechanisms make modular programming natural, fully statically typed, and without
boilerplate code and excessive parametrization. We present several examples and three case studies
in CP. We also introduce a technique called polymorphic contexts to deal with components that
require some form of context in a modular way. In turn, polymorphic contexts are helpful to model
L-attributed grammars. Our first case study is on the design of an Embedded Domain-Specific
Language (EDSL) for circuits [Gibbons and Wu 2014; Hinze 2004]. This EDSL is interesting because
it has various extensions that can be modularly defined, as well as various dependencies between
components. Our second case study is a mini interpreter, which is a larger study and can be extended
in several ways. The last case study is an implementation of the C0 compiler, inspired by the work
of Rendel et al. [2014]. In this case study, various extensions can be formulated as attributes and
those attributes contain non-trivial dependencies to other attributes.

Finally, we present a small calculus that captures the essence of CP. This calculus is shown to be
type-safe via an elaboration to the 𝐹+𝑖 calculus [Bi et al. 2019], which is a recently proposed calculus
that supports disjoint intersection types [Oliveira et al. 2016], disjoint polymorphism [Alpuim et al.
2017] and nested composition [Bi et al. 2018].
In summary, the contributions of our work are:

• Compositional Programming: We propose a new programming style that encourages
weaker dependencies and increases the modularity of programs. Compositional Programming
eliminates the EP and can deal with modular programs with complex dependencies.

• A language design for Compositional Programming:We present a concrete language
design in the form of the CP calculus. The semantics of this calculus is given by elaboration
to the 𝐹+𝑖 calculus and we prove the type safety of the elaboration.

• Attribute Grammars in CP:We show that CP is powerful enough to implement programs
with attributes that are expressible in attribute grammars [Knuth 1968, 1990] in a concise
and fully statically type-checked manner. Our technique is partly inspired by the encoding
of Rendel et al. [2014], but CP avoids explicit definitions of composition operators, which are
necessary in Rendel et al. [2014]’s encoding.
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• Polymorphic contexts:We introduce a simple technique that combines disjoint polymor-
phism and Compositional Programming to allow for modular contexts in modular compo-
nents.

• Implementation, case studies, and examples: We have an implementation of CP. We
present several examples and three case studies in CP. Altogether, these examples and case
studies illustrate how to naturally solve challenges such as the EP or modeling attribute-
grammar-like programs. The implementation and case studies can be found in:

https://github.com/wxzh/CP

2 BACKGROUND

This section gives the necessary background to this paper. We first review the well-known Expres-
sion Problem (EP) [Wadler 1998] and then move on to the closely related work, namely Object
Algebras [Oliveira and Cook 2012] and SEDEL [Bi and Oliveira 2018].

2.1 The Inescapable Expression Problem

In a paper talking about modularity and extensibility, it is hard to avoid the infamous EP, which
is a minimal problem illustrating a long-standing extensibility dilemma in programming lan-
guages [Wadler 1998]. At the heart of the EP is how to modularly extend a datatype and the
operations over it simultaneously. The concrete problem is about how to create a very simple form
of expressions (such as numeric literals and addition), and operations over those expressions (such
as evaluation and pretty-printing) in a modular way. In OOP, we usually define an abstract class
(or interface) for method signatures, and then implement it with various concrete operations:

abstract class Exp {

def eval: Int

def print: String

}

class Lit(n: Int) extends Exp {

def eval = n

def print = n.toString

}

class Add(l: Exp, r: Exp) extends Exp {

def eval = l.eval + r.eval

def print = l.print + "+" + r.print

}

In this case, it is quite easy to add more data variants (such as multiplication) by creating new
classes. However, adding new operations (such as logging) is difficult because every class needs
amendments for new methods. Such amendments violate the open-closed principle in OOP [Meyer
1988]. The situation is exactly the opposite when it comes to functional programming. As shown
by eval and printChild in Section 1, new operations are just new functions, while adding data
variants becomes difficult since it requires modification to every function.

Wadler [1998] and Zenger and Odersky [2005] summarize various requirements that a solution
to the EP should satisfy. In short, a solution to the EP should allow modularly adding new forms of
expressions and new operations over those expressions, while preserving type-safety and separate
compilation. Also desirable is the ability to combine multiple independently developed extensions.
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2.2 Object Algebras

Object Algebras [Oliveira and Cook 2012] are a well-known OOP solution to the EP. The abstract
syntax of the expressions is described by an Object Algebra interface (a Scala trait):
trait ExpAlg[Exp] {

def Lit: Int => Exp

def Add: (Exp,Exp) => Exp

}

Essentially ExpAlg is an abstract factory, where the type parameter Exp captures the expression type
and capitalized methods are factory methods returning variants of expressions.
Operations over the expressions are concrete factories that implement the ExpAlg interface. For

example, evaluation can be defined as:
trait IEval {

def eval: Int

}

trait Eval extends ExpAlg[IEval] {

def Lit = n => new IEval {

def eval = n

}

def Add = (e1,e2) => new IEval {

def eval = e1.eval + e2.eval

}

}

object eval extends Eval

Eval implements ExpAlg by instantiating Exp as IEval and defining each factory method accordingly.
Eval is implemented with a trait instead of a class for allowing mixin composition. To conveniently
use Eval, an object eval is also defined.

Adding new operations. It is easy to add new operations by reimplementing the ExpAlg interface.
For example, printing is defined in a way similar to evaluation:
trait IPrint {

def print: String

}

trait Print extends ExpAlg[IPrint] {

def Lit = n => new IPrint {

def print = n.toString

}

def Add = (e1,e2) => new IPrint {

def print = "(" ++ e1.print ++ "+" ++ e2.print ++ ")"

}

}

object print extends Print

where Print instantiates Exp as IPrint and implements each factory method accordingly.

Adding new variants. It is also easy to add new variants by extending the Object Algebra interface
with new factory methods. For example, multiplications are modularly introduced as follows:
trait MulAlg[Exp] extends ExpAlg[Exp] {
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def Mul: (Exp,Exp) => Exp

}

where MulAlg extends ExpAlg with a new factory method Mul. Existing operations such as Eval can
be modularly reused in extensions:
trait EvalMul extends MulAlg[IEval] with Eval {

def Mul = (e1,e2) => new IEval {

def eval = e1.eval * e2.eval

}

}

where EvalMul inherits Eval and complements the definition for Mul only.

Modular terms. Now we show how to modularly construct a simple addition expression:
def exp[Exp](f: ExpAlg[Exp]) = f.Add(f.Lit(0),f.Lit(1))

The generic function exp builds an addition expression via the factory methods exposed by the
abstract algebra f. Expressions constructed in this way are modular because concrete expressions
can be obtained by calling exp with concrete algebras such as eval and print:
println(exp(eval).eval) // 1

println(exp(print).print) // "(0+1)"

By supplying eval and print, the expression can be respectively evaluated and printed.

2.3 Limitations of Object Algebras

Object Algebras, in their basic form, have several limitations. We discuss the limitations one by one
and show how generalized Object Algebras [Oliveira et al. 2013; Rendel et al. 2014] try to address
these limitations.

Object Algebra combinators. The first issue is that there is no proper composition mechanism for

Object Algebras. In the previous section, the expression is indeed constructed twice respectively for
evaluating and printing. A more efficient way is to compose Eval and Print into a single algebra so
that the expression can be constructed only once for both evaluating and printing. A workaround
is to use pair-based Object Algebra combinators [Oliveira and Cook 2012], which require explicit
projections and hence are inconvenient for use. Fortunately, explicit projections can be eliminated
with the help of intersection types. In Scala, the type A with B denotes the intersection of two
types A and B, where A with B is a subtype of both A and B. The intersection-based Object Algebra
combinator for ExpAlg can be defined as:
trait ExpMerge[A,B] extends ExpAlg[A with B] {

val alg1: ExpAlg[A]

val alg2: ExpAlg[B]

def lift(x: A, y: B) : A with B

def Lit = n =>

lift(alg1.Lit(n), alg2.Lit(n))

def Add = (e1,e2) =>

lift(alg1.Add(e1, e2), alg2.Add(e1, e2))

}

ExpMerge captures the two algebras to be composed as fields alg1 and alg2. ExpMerge implements
ExpAlg by instantiating the type parameter as A with B and defining each factory method by firstly

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.



1:8 Weixin Zhang, Yaozhu Sun, and Bruno C. d. S. Oliveira

calling the corresponding factory method respectively defined on alg1 and alg2 then merging the
results via the lift method. Concrete composition is done by implementing ExpMerge with the
values alg1, alg2 and the definition of lift. For example, the composition of Eval and Print is done
like this:

object evalPrint extends ExpMerge[IEval, IPrint] {

val alg1 = eval

val alg2 = print

def lift(x: IEval, y: IPrint) = new IEval with IPrint {

def eval = x.eval

def print = y.print

}

}

With the composed algebra evalPrint, the expression can be constructed only once:

val e = exp(evalPrint)

println(e.print + " is " + e.eval) // "(0+1) is 1"

Unfortunately, the composition is still done in a cumbersome way. Specialized combinators and
a lot of boilerplate code are needed for each Object Algebra interface and for each composition.
Workarounds are further proposed, such as using generic combinators and reflection [Oliveira et al.
2013] or a combination of macros and implicits [Rendel et al. 2014].

Dependent operations. The second issue is that it is hard to model dependent operations. With
conventional Object Algebras, the dependent operation has to be defined together with what it
depends on. Recall the pretty-printer that depends on the evaluation discussed in Section 1. It is
defined as follows:

trait PrintChild extends ExpAlg[IEval with IPrint] {

def Lit = n => new IEval with IPrint {

def eval = n

def print = n.toString

}

def Add = (e1,e2) => new IEval with IPrint {

def eval = e1.eval + e2.eval

def print = if (e1.eval == 0) e2.print

else "(" ++ e1.print ++ "+" ++ ")"

}

}

The type parameter Exp is instantiated as IEval with IPrint for allowing both eval and print invo-
cations on expressions. Such an implementation is non-modular because the implementation of Eval
is repeated inside PrintChild and PrintChild is tightly coupled with a particular implementation
of evaluation.

Generalized Object Algebras. To account for dependencies modularly, a generalization of Object
Algebras has been proposed by Oliveira et al. [2013]. The expression Object Algebra interface is
generalized by distinguishing negative (input) and positive (output) occurrences of the expression
type. For example, ExpAlg can be generalized in the following way:

trait GExpAlg[Exp,OExp] {
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def Lit: Int => OExp

def Add: (Exp,Exp) => OExp

}

where an additional type parameter OExp is introduced for capturing positive (output) occurrences
of the expression type. Here, the return type positions of the two factory methods are positive and
hence are replaced by OExp. The ordinary Object Algebra interface can be restored by making Exp

and OExp consistent, which is convenient for defining algebras without dependencies:

type ExpAlg[Exp] = GExpAlg[Exp,Exp]

By doing this, evaluation and printing algebras can be defined as before. Furthermore, dependent
printing can be modularly defined with generalized Object Algebras:

trait PrintChild extends GExpAlg[IEval with IPrint, IPrint] {

def Lit = n => new IPrint {

def print = n.toString

}

def Add = (e1,e2) => new IPrint {

def print = if (e1.eval == 0) e2.print

else "(" ++ e1.print ++ "+" ++ ")"

}

}

The dependency on evaluation is expressed by instantiating the input type as IEval with IPrint

and the output type as IPrint. The dependency is modular because PrintChild does not depend
on a particular implementation of evaluation. The dependency can be fulfilled by composing
PrintChild with any other algebra that implements ExpAlg[IEval] such as Eval. However, this
requires a generalized Object Algebra combinator for performing such composition.

Summary. The Expression Problem illustrates some fundamental difficulties of writing modular
code in current programming languages. Techniques such as Object Algebras provide a solution
for such problems, but they have their own limitations. These limitations partly arise from the lack
of programming language support. In particular:

• Unconventional programming style: The programming style required to program with
Object Algebras is quite unconventional compared to standard OOP code. For instance, since
constructors are avoided, all objects must be constructed relative to an Object Algebra (or
factory), similarly to the method exp. Moreover, the code required for programming with
Object Algebras is somewhat verbose.

• No built-in composition: Scala (or other OOP languages) have built-in support for a form
of inheritance, which provides a mechanism to compose code. However, such OOP languages
do not support the composition of Object Algebras. Composing Object Algebras in such
languages is possible, but requires the explicit definition of composition operators, which
have to be defined for each Object Algebra interface.

• No built-in support for modular dependencies: Dependencies are quite common in
programming. All realistic software will involve multiple forms of dependencies. However,
using simple Object Algebras forces dependencies to be written in a non-modular way.
Writing modular dependencies is possible with a generalization of Object Algebra interfaces
and specialized composition operators. However, such composition operators require a lot
of boilerplate code, generalized Object Algebras require a careful manual encoding that
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distinguishes positive and negative occurrences, and the programming style involved in such
code is generally quite heavyweight and unconventional.

In Section 3, we will show how Compositional Programming addresses these issues and leads to
a natural, boilerplate-free, modular programming style.

2.4 SEDEL and First-Class Traits

Intersection types are useful to model modular programs, as we have seen in the previous section.
In particular, the Object Algebra combinators use intersection types. However, one useful feature
missing in Scala for programming with intersection types is a merge operator. Without this
operator, it is sometimes necessary to simulate a merge operator in Scala using meta-programming
or reflection [Oliveira et al. 2013; Rendel et al. 2014], which results in convoluted error messages,
performance penalties and, more generally, lack of modular type-checking.

Recent developments on disjoint intersection types [Oliveira et al. 2016] provide an alternative
approach that supports a native merge operator. The _𝑖 calculus [Oliveira et al. 2016] was the first
calculus with disjoint intersection types and addressed the incoherence problem of intersection
types with a merge operator [Dunfield 2014] by introducing the notion of disjointness. The 𝐹𝑖
calculus [Alpuim et al. 2017] extends _𝑖 with a form of parametric polymorphism called disjoint

polymorphism, where type parameters can be constrained to be disjoint with a specific type. On
the other hand, _+𝑖 [Bi et al. 2018] extends _𝑖 with BCD-style distributive subtyping, enabling
nested composition. The 𝐹+𝑖 calculus [Bi et al. 2019] combines disjoint intersection types, disjoint
polymorphism, and nested composition, enabling all the foundational ingredients for Compositional
Programming. However, 𝐹+𝑖 lacks higher-level programming abstractions to make programming
convenient. SEDEL [Bi and Oliveira 2018] is a surface language built upon 𝐹𝑖 that supports first-class
traits. That is, unlike Scala traits, SEDEL traits are expressions that can be passed to a function,
assigned to a variable, or returned as values. Furthermore, they can be composed to achieve a form
of multiple inheritance. Such composition is enabled by the merge operator of 𝐹𝑖 .

Trait expressions and self-types. Like Scala traits, SEDEL traits can be annotated with self-types
for expressing the dependency on some methods that are implemented by other traits. For example,
we can have two mutually dependent traits that respectively implement the methods for testing
whether a number is even or odd:
type Even = { isEven : Int -> Bool };

type Odd = { isOdd : Int -> Bool };

even = trait [self: Odd] => {

isEven (n : Int) = if n == 0 then true else self.isOdd (n - 1)

} : Even;

odd = trait [self: Even] => {

isOdd (n : Int) = if n == 0 then false else self.isEven (n - 1)

} : Odd;

Even and Odd are type aliases respectively bound to the record types declaring isEven and isOdd.
By annotating the self-type as [self: Odd], even can call isOdd via self for implementing isEven

in its body. The Even annotation in the end of the trait expression makes sure that isEven has been
implemented.

Trait types. In the previous example, the type of even is Trait[Odd,Even] and the type of odd is
Trait[Even,Odd]. Trait types in SEDEL distinguish between the required and the provided interface.
The required interface describes the methods that the trait needs for providing its functionality,
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playing a similar role to abstract methods in other OOP languages. Meanwhile, the provided interface
describes the functionality that the trait offers. For the case of Trait[Odd,Even], Odd is the required
interface while Even is the provided interface. When nothing is required, we can just write Trait[A]
instead of Trait[Top,A].

Trait instantiations. A trait can be instantiated into an object (a record) using a new expression
only when its required interface is met. For example, the following attempt to instantiate even fails:
new[Even] even -- Type Error!

Here the object’s type, Even, must be explicitly specified inside [] of the new expression. The above
instantiation fails because the required interface of even, Odd, is neither implemented by the trait
even nor its parents. Nevertheless, even can be instantiated together with odd since the two traits
implement each other’s required interface:
evenOdd = new[Even & Odd] even & odd; -- OK!

main = evenOdd.isEven 2 --> true

The two traits are instantiated into a single object of type Even & Odd that implements both isEven

and isOdd methods.

First-class traits, disjoint polymorphism, and dynamic inheritance. An example that differentiates
SEDEL’s traits from Scala’s traits is:
combine A [B * A] (x : Trait[A]) (y : Trait[B]) = trait inherits x & y => {};

The function combine takes two traits, x and y, and returns a trait that inherits both x and y. The
definition of combine illustrates three key features of SEDEL: disjoint polymorphism, first-class
traits and dynamic inheritance. Firstly, combine is a polymorphic function and the notation [B * A],
means that the type parameter B is disjoint with A. This constraint ensures that inheriting x and y

simultaneously will have no conflicts. Secondly, traits are passed as arguments (x and y) and a trait
is the return value of combine, showing that traits are first-class values. Thirdly, note that what the
trait expression inherits (x and y) are parameters of combine, which are statically unknown. Such
kind of dynamic inheritance is not possible in conventional statically typed OOP languages (like
Scala or Java), where classes must be statically known, and they cannot be passed as arguments.

Resolving conflicts. Trait composition (or inheritance) in SEDEL follows the traditional trait
model [Schärli et al. 2003] where two traits cannot have conflicts for composition to be successful.
A benefit of the trait model is that composition is commutative and associative, which ensures
that the order of composition is irrelevant. In the implementation of SEDEL, trait composition
is encoded in terms of the merge operator, which is itself commutative and associative and does
not allow for overlapping (or conflicting) values [Bi et al. 2018]. In the case that two traits being
composed have conflicts, those conflicts must be explicitly resolved in SEDEL. Suppose that we
have two traits t1 and t2 that contain conflicting fields:
t1 = trait => { f = 1; g = "a" };

t2 = trait => { f = 2; g = "b" };

For a trait that would like to inherit from both t1 and t2, the conflicts must be explicitly resolved.
Otherwise, a type error will be reported saying that t1 and t2 are not disjoint. One way to resolve
the conflicts is:
t3 = trait [self: Top] inherits t1 \ {f: Int} & t2 \ {g: String} => {

override f = super.f + (t1 ^ self).f

};

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.



1:12 Weixin Zhang, Yaozhu Sun, and Bruno C. d. S. Oliveira

The conflicts are resolved by using the exclusion operator (\) to remove f and g respectively from t1

and t2. Together with a self-type annotation [self: Top], the excluded methods from parents can
still be accessed via the forwarding operator (^) [Bi and Oliveira 2018]. Here, the overridden f sums
up the inherited f from t2 via super and the excluded f from t1 via the forwarding expression. We
can construct an object from t3 to test that f actually returns 3:

main = (new[{f: Int; g: String}] t3).f --> 3

3 AN OVERVIEW OF COMPOSITIONAL PROGRAMMING

This section presents an overview of Compositional Programming. We start by introducing the
basic mechanisms of Compositional Programming with the Expression Problem (EP). We then move
on to harder modularity issues, such as various forms of dependencies, which arise in modular
programs that compute various forms of attributes. All the CP programs presented here can run in
our implementation of CP and can be found in the companion material of this paper.

3.1 The Expression Problem with Compositional Programming

In Compositional Programming, there is no EP: it is both easy to add new variants, as well as new
operations. Indeed, an explicit goal of Compositional Programming is that programmers do not
need to face the tension of choosing one dimension for extensibility. Therefore, Compositional
Programming offers an alternative way to model data structures that differs from both algebraic
datatypes and conventional OOP class hierarchies. Because of such fundamental differences, and the
more modular programming style, we can think of Compositional Programming as an alternative
programming paradigm. We introduce the mechanisms used in the programming language CP by
solving the EP next.

Compositional interfaces and sorts. In CP, we use a compositional interface to declare a datatype.
Compositional interfaces generalize conventional OOP interfaces: we can define not only the
signatures of methods but also those of constructors, which is not possible in conventional OOP
languages like Java. The compositional interface for basic arithmetic expressions is:

type ExpSig<Exp> = {

Lit : Int -> Exp;

Add : Exp -> Exp -> Exp;

};

There are two kinds of expressions for now: literals and addition. The type parameter Exp wrapped
in angle brackets is called a sort of the compositional interface, working as the type of both kinds
of expressions. Lit and Add are the signatures of the constructors for arithmetic expressions. In CP,
constructors always start with a capital letter, while all methods start with a lowercase letter. The
return type of a constructor must always be a sort, and there can be arbitrarily many sorts in a
compositional interface.

Note that sorts in compositional interfaces are handled differently from normal type parameters,
which is why they have a special syntax of angle brackets around them. In essence, compositional
interfaces are based on several ideas related to generalized Object Algebras (see Section 2.3), and
the special treatment for sorts involves, among other things, distinguishing uses of positive and
negative occurrences of the type variables. The semantics of sorts is discussed in detail in Section 5.
Nonetheless, these subtle semantic differences are essentially only relevant for programs with
dependencies, such as those presented in Section 3.2. For now, it suffices to think of sorts as type
parameters.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.



Compositional Programming 1:13

Analogy with algebraic datatypes. Compositional interfaces defining only constructors play a
similar role to algebraic datatypes in functional programming. Like algebraic datatypes, they can
be used to define data structures by specifying the name of the data structure and the signatures of
the constructors. For example, a Haskell counterpart of the compositional interface above is:

data Exp where

Lit :: Int -> Exp

Add :: Exp -> Exp -> Exp

The sort Exp of the compositional interface corresponds to the name of the datatype, whereas in both
cases the constructors essentially specify the same information: the signatures of the constructors.

Compositional traits. The unit of code reuse in CP is a generalization of (first-class) traits [Bi
and Oliveira 2018; Schärli et al. 2003]. The generalization stems from the fact that we can define
not only method implementations but also (virtual) trait constructors within a trait. In CP, the
implementation of the eval operation for the basic form of expressions can be done in a trait:

type Eval = { eval : Int };

evalNum = trait implements ExpSig<Eval> => {

(Lit n).eval = n;

(Add e1 e2).eval = e1.eval + e2.eval;

};

This trait implements the compositional interface ExpSig with the sort instantiated as Eval, corre-
sponding to its actual operation. Eval is another example of a compositional interface, which in
this case, because it has no sorts, just degenerates into a conventional OOP-style interface with a
method eval returning Int. Within the trait evalNum, we implement the eval method for Lit and
Add to evaluate the arithmetic expressions.

Method patterns. Themethod pattern (Lit n).eval is a lightweight syntax used to define the eval
method within the trait (which implements the interface Eval) that the constructor Lit returns. In
CP, method patterns are used to make trait definitions concise. Method patterns allow definitions
that resemble functional programming definitions by pattern matching, or attributes in attribute
grammars. An alternative way of defining constructors would explicitly use first-class traits, which
is essentially what method patterns are desugared to:

evalNum = trait implements ExpSig<Eval> => {

Lit n = trait => { eval = n; };

Add e1 e2 = trait => { eval = e1.eval + e2.eval; };

};

Nested traits and trait families. As shown above, method patterns inside a trait are essentially
defining nested traits. The outer trait, evalNum, is called a trait family. The terminology trait family

is borrowed from family polymorphism [Ernst 2001]. In family polymorphism, a family is a class
that contains nested virtual classes. In CP, a trait family is a trait that contains nested virtual traits.

Virtual constructors. One significant difference frommost existing languages is thatCP’s construc-
tors are virtual. In languages like Java, there are virtual methods, whose concrete implementation
is unknown at the time a class is defined. In this way, the references to methods are loose and
determined only when objects are instantiated. However, languages like Java do not support virtual
constructors or virtual classes [Madsen and Moller-Pedersen 1989]. A virtual constructor is not
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bound to a specific implementation of a trait. Instead, it conforms to the signature in the com-
positional interface. With virtual constructors, it is possible to create a trait that constructs an
expression without sticking to a particular implementation of the compositional interface:

expAdd Exp = trait [self : ExpSig<Exp>] => {

test = new Add (new Lit 4) (new Lit 8);

};

In CP, term parameters start with a lowercase letter while type parameters are capitalized, so Exp

is a type parameter, serving as the sort of ExpSig. Thus expAdd contains an abstract expression that
is not associated with any concrete method implementations.

Self-type annotations. The expAdd trait above is parameterized by Exp and specifies its self-type
as ExpSig<Exp>. Such self-type annotations are similar to those in Scala [Odersky et al. 2004],
which enable a modular way of injecting dependencies on other operations/constructors. The self-
type annotation of expAdd expresses that expAdd must be merged with some trait that concretely
implements ExpSig for instantiation. By specifying the self-type, the constructors declared inside
ExpSig, i.e. Lit and Add, are directly available for building an expression named test. Section 3.2
will discuss additional mechanisms in CP to deal with other forms of dependencies.

Extensibility: adding new operations. Like in functional programming with algebraic datatypes
and pattern matching, adding a new operation is trivial in CP. We can just create an independent
trait family that implements the compositional interface:

type Print = { print : String };

printNum = trait implements ExpSig<Print> => {

(Lit n).print = n.toString;

(Add e1 e2).print = "(" ++ e1.print ++ "+" ++ e2.print ++ ")";

};

The trait printNum implements ExpSig<Print> and defines Lit and Add using method patterns, in a
way similar to evalNum. It modularly supports pretty-printing for expressions.

Nested trait composition. At the heart of Compositional Programming is a powerful composition
mechanism called nested composition [Bi et al. 2018]. Nested composition allows the composition of
multiple trait families. This mechanism can be viewed as a form of multiple (trait) inheritance, but
with the added ability to recursively compose nested traits automatically. Thus it provides compo-
sition mechanisms that are similar to the ones found in languages with family polymorphism. Like
trait composition [Schärli et al. 2003], nested composition in CP is associative and commutative [Bi
et al. 2018]. Furthermore, following the trait model and SEDEL, conflicts arising during composition
are rejected. In CP, which is statically typed, such conflicts are statically rejected as type errors,
following a similar approach to trait composition in SEDEL. Conflict resolution in CP can be done
using method overriding or an explicit exclusion operator (like in many models of traits).

In CP, nested composition is performed by the merge operator ,, [Dunfield 2014]. For example,
to compose the trait families evalNum and printNum with the aforementioned expAdd we can write:

e = new evalNum ,, printNum ,, expAdd @(Eval&Print);

Note that the merge operator ,, binds tighter than new (but application and type application
still bind tighter than ,,). The type application expAdd @(Eval&Print) makes the generic trait
expAdd concrete by instantiating the type parameter Exp as the argument Eval&Print. Since the
self-type annotation of expAdd has been instantiated as ExpSig<Eval&Print>, in order to meet this
self-type requirement, the trait has to be merged with some trait that simultaneously implements
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the eval and print operations for the constructors exposed by ExpSig. The requirement is met by
merging expAdd @(Eval&Print) with evalNum and printNum. Thus, the merged trait is successfully
instantiated into an object using a new expression.
It is useful to take a moment and understand why the trait composition performed for e and

the method calls in the expression above pass type-checking and work as expected. Note that
the types of evalNum, printNum and expAdd @(Eval&Print) are, respectively, Trait[ExpSig<Eval>],
Trait[ExpSig<Print>] and Trait[ExpSig<Eval&Print>,{test:Eval&Print}]. Their merge is then of
the type Trait[ExpSig<Eval&Print>,ExpSig<Eval>&ExpSig<Print>&{test:Eval&Print}]. Themerged
trait type is an instantiatable trait type (i.e. the provided type is a subtype of the required type)
because ExpSig<Eval>&ExpSig<Print> is a subtype of ExpSig<Eval&Print> in CP. In essence, the
subtyping relation employed by CP supports distributivity of intersections over other constructs [Bi
et al. 2018]. In CP, intersections can distribute over function types, records, and trait types. Through
the object e, we can both evaluate and print the addition expression:

e.test.print ++ " is " ++ e.test.eval.toString --> "(4+8) is 12"

Extensibility: adding new variants. Finally, we show how to add multiplications to the language
modularly. Note that this is where Compositional Programming differs from algebraic datatypes
and definitions by pattern matching, where such extensions cannot be modularly added. We first
define a compositional interface that extends ExpSig with a Mul constructor:

type MulSig<Exp> extends ExpSig<Exp> = {

Mul : Exp -> Exp -> Exp;

};

We then implement evaluation and printing by defining two trait families evalMul and printMul

that respectively inherit evalNum and printNum and complement a definition for Mul:

evalMul = trait implements MulSig<Eval> inherits evalNum => {

(Mul e1 e2).eval = e1.eval * e2.eval;

};

printMul = trait implements MulSig<Print> inherits printNum => {

(Mul e1 e2).print = "(" ++ e1.print ++ "*" ++ e2.print ++ ")";

};

Without editing any existing code, we modularly add new data variants. Note that here we use a new
keyword inherits. In CP, inheritance is based on the merge operator but given a more convenient
syntax that resembles conventional OOP. Besides nested composition, inherits additionally allows
fields defined in the parent trait to be overridden but still can be used via super calls in the trait
body. With super calls and inheritance, we can, for instance, construct a slightly more complex
expression:

expMul Exp = trait [self : MulSig<Exp>] inherits expAdd @Exp => {

override test = new Mul super.test (new Lit 4);

};

e' = new evalMul ,, printMul ,, expMul @(Eval&Print);

e'.test.print ++ " is " ++ e'.test.eval.toString --> "((4+8)*4) is 48"

The trait expMul inherits expAdd, refines the self-type to MulSig and overrides the test field. The
overridden expression reuses the inherited expression via super.test. Finally, the object e' supports
all of the three constructors together with the evaluation and printing operations.
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Summary. For the basic EP, there are already many solutions in the literature, including some in
mainstream programming languages [Garrigue 2000; Oliveira and Cook 2012; Oliveira et al. 2006a;
Swierstra 2008; Torgersen 2004; Zenger and Odersky 2005]. One interesting aspect of the solution
presented here is that it is quite elegant and natural, while solutions in mainstream languages tend
to have significant amounts of boilerplate code, or are written in highly parametrized code that is
not programmer-friendly. Additionally, the more interesting aspect of Compositional Programming
is its wide support for various forms of modular code with dependencies, which is shown next.

3.2 Dependencies and S-Attributed Grammars

In the original EP by Wadler [1998], there are very few dependencies. In particular, the operations
(eval and print) depend only on themselves, but they do not depend on other operations. Matters
become significantly more complicated in the presence of more advanced forms of dependencies,
and very few existing solutions to the EP have effective mechanisms to deal with dependencies in a
modular way. Two primary mechanisms are used to deal with dependencies in CP:

• Compositional interface type refinement:When a trait implements some compositional
interface, it can refine the sort types in input positions. This allows the child nodes in a data
structure to assume some functionality that is not implemented in the enclosing trait, but
will eventually be part of the final composition later.

• Self-type annotations: Like in Scala, the types of self-references can be specified/refined.
This enables the self-references to assume functionality that will be implemented by a different
trait that will eventually be composed with the current trait. In the context of trait families,
there are two kinds of self-references: object self-references and family self-references [Oliveira
et al. 2013]. The trait expAdd in Section 3.1 already illustrates family self-references, so in
what follows we illustrate only object self-references.

We use examples inspired from S-attributed grammars [Knuth 1968] and the work from Rendel et al.
[2014] to illustrate how Compositional Programming addresses programs with different kinds of
dependencies in a modular way. S-attributed grammars deal with synthesized attributes, which are
computed from the children. Compositional Programming also allows dependencies on self. The
simplest form of dependencies is dependencies on the same attribute of children, which occurred
several times in Section 3.1. Therefore, we focus on two kinds of non-trivial dependencies on other
synthesized attributes, which hereinafter we call child dependencies and self dependencies.

Child dependencies. Child dependencies occur when an attribute depends on other synthesized
attributes of the children. Here is the printChild example from Section 1 in CP:
printChild = trait implements ExpSig<Eval % Print> => {

(Lit n).print = n.toString;

(Add e1 e2).print = if e2.eval == 0 then e1.print

else "(" ++ e1.print ++ "+" ++ e2.print ++ ")";

};

Here (Add e1 e2).print depends on e2.eval. However, there is no implementation of eval in the
trait printChild. To make this child dependency feasible, we use compositional interface type
refinement: we change the concrete interface being implemented to ExpSig<Eval % Print> (instead
of just using ExpSig<Print>). This syntax means that the input type for the expressions in the Add

constructor (and other constructors, if any, referring to the sort Exp) is Eval&Print, while the output
type is still Print. By doing this, we enable the child nodes of Exp to depend on an attribute whose
implementation is modularly defined somewhere else. Two examples of trait instantiations are:
new printChild ,, expAdd @Print -- Type Error!
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new printChild ,, evalNum ,, expAdd @(Print&Eval) -- OK!

This first instantiation attempt fails type-checking because it depends on eval, which is missing.
The second one works since we merge printChild with the trait evalNum (which implements Eval).
Importantly, instead of evalNum, we could have used any implementation with the same type.

Contrast with inheritance. It is useful to compare the previous example with the more common
OOP approach based on inheritance:

printInh = trait implements ExpSig<Eval&Print> inherits evalNum => {

(Lit n).print = n.toString;

(Add e1 e2).print = if e2.eval == 0 then e1.print

else "(" ++ e1.print ++ "+" ++ e2.print ++ ")";

};

The first thing to notice is that the code in the trait body of printInh is exactly the same as that
in printChild. Conforming to the compositional interface instantiated with Eval&Print, printInh
essentially implements both eval and print instead of only print, because the evalNum trait family
is inherited. Although both approaches work, printInh is tightly coupled with the particular
implementation of evaluation coming from evalNum. In contrast, printChild declares a weaker
dependency on the abstract interface of Eval. We can delay the combination with a concrete
implementation of Eval until the instantiation phase. In short, printChild allows for weak child
dependencies, which are not coupled with a particular implementation, while preserving strong
static type safety. More generally, most uses of inheritance in CP can be converted into code that
has weaker dependencies.

Self dependencies. A second interesting case is dependencies on other synthesized attributes of
the self-reference. In the following example, the attribute print depends on self.eval:

printSelf = trait implements ExpSig<Eval % Print> => {

(Lit n ).print = n.toString;

(Add e1 e2 [self:Eval]).print = if self.eval == 0 then "0"

else "(" ++ e1.print ++ "+" ++ e2.print ++ ")";

};

To deal with this dependency without sticking to a particular implementation of eval, we add an
(object) self-type annotation [self:Eval] to use self.eval in Add. Note that we also need to change
the sort instantiation to ExpSig<Eval % Print> like the child dependencies, in order to change the
self-type of the returning trait correspondingly. The static type-checker will check whether the
trait is later merged with another trait that implements ExpSig<Eval>. With no compromises on
type safety, CP enables modular weak self dependencies on other attributes.

Mutual dependencies. Finally, a more general form of dependencies ismutual dependencies, which
happen when two attributes are inter-defined, i.e., they depend on each other. Mutual dependencies
can involve both child and self dependencies, as illustrated in the following example:

type PrintAux = { printAux : String };

printMutual = trait implements ExpSig<PrintAux % Print> => {

(Lit n).print = n.toString;

(Add e1 e2).print = e1.printAux ++ "+" ++ e2.printAux;

};

printAux = trait implements ExpSig<Print % PrintAux> => {

(Lit n [self:Print]).printAux = self.print;
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(Add e1 e2 [self:Print]).printAux = "(" ++ self.print ++ ")";

};

The two trait families printMutual and printAux cooperate to omit the outermost parentheses
in pretty-printing. We can see that (Add e1 e2).print depends on the printAux while printAux

depends on print, thus print and printAux are mutually dependent. CP handles such mutual
dependencies modularly. We can combine the traits and use them as before:
(new printMutual ,, printAux ,, expAdd @(Print&PrintAux)).test.print --> "4+8"

Summary. Many attribute grammar systems allow the modular definition of attributes, but this
is usually done at the cost of modular type-safety. The compositional mechanisms in CP retain the
ability of modularly defining attributes from S-attributed grammars or even attributes from self-
references, but in a statically type-safe setting. Moreover, the implementations of the attributes are
changeable in the final composition. For example, the aforementioned traits printNum, printChild,
printSelf, and printMutual all implement the print method. A programmer can freely pick his
favorite implementation to combine with other attributes, such as eval.

4 PARAMETRIC POLYMORPHISM AND L-ATTRIBUTED GRAMMARS

In Section 3, we introduced the basic mechanisms for Compositional Programming and illustrated
how CP deals with dependencies. One feature that practically all modern languages support is
some form of parametric polymorphism (or generics in OOP languages). A reasonable question to
ask is how Compositional Programming interacts with parametric polymorphism. Furthermore,
one may wonder if the combination of parametric polymorphism and Compositional Programming
enables novel techniques that are useful for programming.

In this section, we explore this question. CP has full support for a form of parametric polymor-
phism called disjoint polymorphism [Alpuim et al. 2017]. We introduce a novel technique called
polymorphic contexts, which addresses the problem of different modular components requiring
different kinds of contextual information. The technique provides encapsulation of contexts: mod-
ular components have access to the contextual information they require but do not have access
to contextual information used by other components. This technique is useful to model inherited
attributes, where it is possible to access attributes from parents or siblings. To achieve this, a context
should be attached to pass attributes from top to bottom. There is a close relationship between
contextual evaluation and L-attributed grammars [Knuth 1968; Rendel et al. 2014].

4.1 Contexts and Modular Components

There are plenty of scenarios where we need to add contexts to our code. One of the most common
examples is variable binding in an interpreter. Recall that, in Section 3.1, we defined the type of
eval as Int. But this interface is not suitable for an expression language with variable binding. A
naive fix is to modify the existing code and add a context to all the trait families:
type Eval = { eval : EnvN -> Int };

evalNum = trait implements ExpSig<Eval> => {

(Lit n).eval (env:EnvN) = n;

(Add e1 e2).eval (env:EnvN) = e1.eval env + e2.eval env;

};

evalVar = trait implements VarSig<Eval> => {

(Let s e1 e2).eval (env:EnvN) = e2.eval (insert @Int s (e1.eval env) env);

(Var s).eval (env:EnvN) = lookup @Int s env;

};
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Note that we add an EnvN parameter to eval. Since CP’s support for type inference is still limited,
while n, e1 and e2 do not require type annotations, we have to annotate envwith EnvN here. EnvN is a
map from String to Int, serving as the variable environment, while insert and lookup are auxiliary
functions on maps. For the Let expression in evalVar, we evaluate e1 and insert the evaluation
result into env before evaluating e2 (the body of the Let expression). For the Var expression, we look
up the variable name to get its value. Although evalNum does not need the context for evaluating
arithmetic expressions, we still have to pass the context to the recursive calls to make env available
everywhere.

So far, it seems that everything works well. But what if we add a new context? For example, many
interpreters need to pre-define some primitive functions, which are called intrinsics. Therefore,
we should add an intrinsic environment to store these intrinsic functions. Just like Common Lisp,
functions and values do not share the same namespace in this expression language, so these two
environments are independent of each other. We need a second parameter for eval, which requires
modifying all existing code again:

type Eval = { eval : EnvN -> EnvF -> Int };

evalNum = trait implements ExpSig<Eval> => {

(Lit n).eval (envN:EnvN) (envF:EnvF) = n;

(Add e1 e2).eval (envN:EnvN) (envF:EnvF) = e1.eval envN envF + e2.eval envN envF;

};

evalVar = trait implements VarSig<Eval> => {

(Let s e1 e2).eval (envN:EnvN) (envF:EnvF) =

e2.eval (insert @Int s (e1.eval envN envF) envN) envF;

(Var s).eval (envN:EnvN) (envF:EnvF) = lookup @Int s envN;

};

evalFunc = trait implements FuncSig<Eval> => {

(LetF s f e).eval (envN:EnvN) (envF:EnvF) = e.eval envN (insert @Func s f envF);

(AppF s e).eval (envN:EnvN) (envF:EnvF) = (lookup @Func s envF) (e.eval envN envF);

};

Such an approach to adding contextual information has two main problems:
• It is highly non-modular: Every time a new context is needed, all the existing code has
to be modified. What is worse, we cannot easily modify the type of context if the previous
definitions are from a library. In other words, the library author has to anticipate what kind
of contexts will be needed in the future, which is impossible.

• It does not encapsulate contexts: Interfaces of contexts are fully exposed, even if they are
not directly used. For example, Let and Var do not touch envF, while LetF and AppF do not
touch envN. Such unnecessary exposure may lead to unexpected modifications to the contexts
which ought to be hidden to avoid exploitation by malicious code.

4.2 Polymorphic Contexts

To address the two problems identified in the previous section, we propose a technique that
relies on disjoint polymorphism, intersection types and nested composition. This technique enables
modular, encapsulated contexts for modular components. Since we cannot anticipate what a
context will evolve to in the future, our idea is to make contexts subject to change using parametric
polymorphism.

Evaluation with a polymorphic context. Instead of creating an interface for evaluation with specific
contexts, we can parametrize the type of the context:
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type Eval Context = { eval : Context -> Int };

Here Context is a type parameter. In essence Eval becomes a variant of the Reader Monad [Wadler
1992], which is commonly used in functional programming. Similarly to Monads, some initial
planning is necessary to adapt the existing code to use polymorphic contexts:
evalNum Context = trait implements ExpSig<Eval Context> => {

(Lit n).eval (ctx:Context) = n;

(Add e1 e2).eval (ctx:Context) = e1.eval ctx + e2.eval ctx;

};

The trait evalNum has a type parameter Context, which is used as the type of the context in evaluation.
Importantly, when implementing evalNum, the only thing one can do with ctx is to pass it to the
children’s call on eval since ctx is the only value of type Context in scope. In other words, parametric
polymorphism enforces the encapsulation of the context and ensures that the correct context is
passed to the evaluation of the children. To illustrate how CP enforces encapsulation of the context,
suppose that we try to extract information from the polymorphic context, for example, by trying to
look up a variable in the context:
evalNum Context = trait implements ExpSig<Eval Context> => {

(Lit n).eval (ctx:Context) = lookup @Int "foobar" ctx; -- Type Error!

-- (Add e1 e2).eval ... is omitted

}

This code fails to type check because the type of ctx (i.e. Context) is not a subtype of EnvN, and
there is no dynamic casting in CP that can change its type to EnvN. In short, if the polymorphic
context is completely polymorphic (i.e. its type is just a type variable) then there is not much that
can be done with the context except passing it down to recursive calls.

To instantiate evalNum, which requires no context on its own, we can specify Context as Top and
pass () (the canonical top value) to eval:
(new evalNum @Top ,, expAdd @(Eval Top)).add.eval () --> 12

While the code requires an initial modification to be adapted to polymorphic contexts, no
additional changes are necessary when future contexts are added to the program. Moreover, a nice
quality of the code is that it is written in a direct style. Using more sophisticated solutions, such as
Monads, would give additional expressive power, but often at the cost of writing code in a different
style (for instance, with the monadic do notation).

Adding components with contexts. Let us revisit the variable binding example. In order to add
constructs that deal with variables and binders, a context with an envN field is needed:
type CtxN = { envN : EnvN };

Now, we have to write the code for a trait that deals with the evaluation of variables and binders.
But what should be the type of context in this case? Using a fully polymorphic context, as we
did for literal and addition expressions, will not work, because we need to extract and update
information from the environment. Furthermore, using the type CtxN directly as the type of the
environment is too specific, because it forces the contexts to contain exactly CtxN and nothing else.
This would prevent modular context evolution. The answer is to use a context with the intersection
type CtxN&Context:
evalVar (Context * CtxN) = trait implements VarSig<Eval (CtxN&Context)> => {

(Let s e1 e2).eval (ctx:CtxN&Context) =

e2.eval ({ envN = insert @Int s (e1.eval ctx) ctx.envN } ,, ctx:Context);
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(Var s).eval (ctx:CtxN&Context) = lookup @Int s ctx.envN;

};

Context is a type variable disjoint with CtxN (expressed as the annotation Context * CtxN). This is an
example of disjoint polymorphism [Alpuim et al. 2017], which is supported in CP. The disjointness
constraint ensures that when the type variable is instantiated to a concrete type, that type cannot
share a common supertype with CtxN. By using the type CtxN&Context as the type of context, we
ensure that we can access the environment while being oblivious of other information in the
context. Thus the context remains partly polymorphic and adaptable to future extensions while
retaining encapsulation and ensuring that the other information in Context cannot be altered.

A record update problem. The variable environment should be updated during the evaluation of
the Let expression, whereas any other information in the context should be retained as well. Note
that, the type of {envN = insert ...} is CtxN, which does not match CtxN&Context. So we have to
merge it with (ctx:Context) to get back the Context part. This upcasting is possible because Context
is a supertype of CtxN&Context. The disjointness constraint also ensures that the merge passes
type-checking. The code illustrates that in CP we can do a polymorphic record update [Cardelli and
Mitchell 1991] in the presence of subtyping, which is a notorious problem in many calculi with
polymorphic records. For instance, it is well-known that 𝐹<: with records (and many other calculi
with bounded quantification) cannot solve the polymorphic record update problem. There are only
a few calculi with polymorphic records and subtyping that can deal with this problem [Cardelli
1994; Cardelli and Mitchell 1991; Poll 1997], and CP and its core foundation 𝐹+𝑖 are among them.
Note that the problem is simpler without subtyping, and various calculi with row polymorphism can
address a polymorphic record update (for instance Chlipala [2010]; Leijen [2005], among others).

A second component with a context. To support intrinsic functions, we need a second environment
EnvF, and a corresponding trait family:
type CtxF = { envF : EnvF };

evalFunc (Context * CtxF) = trait implements FuncSig<Eval (CtxF&Context)> => {

(LetF s f e).eval (ctx:CtxF&Context) =

e.eval ({ envF = insert @Func s f ctx.envF } ,, ctx:Context);

(AppF s e).eval (ctx:CtxF&Context) = (lookup @Func s ctx.envF) (e.eval ctx);

};

Similarly, a polymorphic record update is needed for the LetF expression. Although these polymor-
phic trait families are defined separately, we can still merge them together using nested composition:
expPoly Exp = trait [self : ExpSig<Exp>&VarSig<Exp>&FuncSig<Exp>] => {

test = new LetF "f" (\(x:Int) -> x * x)

(new Let "x" (new Lit 9) (new AppF "f" (new Var "x")));

};

e = new evalNum @(CtxN&CtxF) ,, evalVar @CtxF ,, evalFunc @CtxN ,,

expPoly @(Eval (CtxN&CtxF));

e.test.eval { envN = empty @Int, envF = empty @Func } --> 81

During the composition of e, the context types used by other trait families are passed as type
arguments to make the final context consistent.

4.3 L-Attributed Grammars

The previous examples only access attributes from parents. It is also possible for inherited attributes
to depend on siblings. There is a superset of the aforementioned S-attributed grammars called
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L-attributed grammars [Knuth 1968], where inherited attributes depend on parents and left siblings.
In such grammars, attributes can be easily evaluated by a left-to-right depth-first traversal.
To illustrate L-attributed grammars, we take pretty-printing as an example. We use a position

number to represent each terminal node in this pretty-printing function. The position number is
determined by the pre-order traversal of the syntax tree. Before computing it, we need an auxiliary
attribute called cnt that calculates the total number of nodes in the current subtree:

type Cnt = { cnt : Int };

cnt = trait implements ExpSig<Cnt> => {

(Lit n).cnt = 1;

(Add e1 e2).cnt = e1.cnt + e2.cnt + 1;

};

With the help of cnt, we can compute that 𝑒1.pos = 𝑒0.pos + 1 and 𝑒2.pos = 𝑒0.pos + 𝑒1 .cnt + 1,
where 𝑒0 is the parent node of 𝑒1 and 𝑒2. The latter equation is a typical example of L-attributed
grammars because the attribute depends on both its parent (𝑒0.pos) and left sibling (𝑒1.cnt). In
our encoding, such computation is done on the parent side and the result is passed down using
polymorphic contexts:

type Pos = { pos : Int };

type InhPos = { pos1 : Pos -> Int; pos2 : Pos -> Cnt -> Int };

type PrintPos Ctx = { print : Pos&Ctx -> String };

printPos (Ctx * Pos) = trait [self : InhPos] implements ExpSig<Cnt % PrintPos Ctx> => {

(Lit n).print (inh:Pos&Ctx) = "{" ++ inh.pos.toString ++ "}";

(Add e1 e2).print (inh:Pos&Ctx) =

"(" ++ e1.print ({ pos = pos1 inh } ,, inh:Ctx) ++ "+" ++

e2.print ({ pos = pos2 inh e1 } ,, inh:Ctx) ++ ")";

pos1 (e0:Pos) = e0.pos + 1;

pos2 (e0:Pos) (e1:Cnt) = e0.pos + e1.cnt + 1;

};

To compute the inherited attribute pos, we introduce two auxiliary functions in InhPos. They are im-
plemented in accordance with the equations stated before. The self-type annotation [self:InhPos]

is added for (Add e1 e2).print to access these two functions. Just like previous environments in
interpreters, pos serves as a part of the context parameter of print. Since there is a child dependency
on cnt, the sort is instantiated as <Cnt % PrintPos Ctx>. The position number is calculated and
passed down via print calls in Add, while inh.pos is finally used in Lit.

With all of the traits ready, we can compose an expression and call the print function like before:

exp Exp = trait [self : ExpSig<Exp>] => {

test = new Add (new Add (new Lit 1) (new Lit 2)) (new Add (new Lit 3) (new Lit 4));

};

e = new cnt ,, printPos @Top ,, exp @(Cnt & PrintPos Top);

e.test.print { pos = 0 } --> (({2}+{3})+({5}+{6}))

Since no other contexts need to be mixed together, we just pass Top as the type argument of
printPos. In the last invocation on print, we set the initial context to {pos = 0}. This means that
the root node of the whole syntax tree is marked as 0, then the parent of the left subtree is 1 and
the leaves are 2 and 3. Similarly, the parent of the right subtree is 4 and the leaves are 5 and 6. We
finally print the position numbers of leaf nodes, as the code shows above.
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Program 𝑃 F 𝐷 ; 𝑃 | 𝐸
Declarations 𝐷 F 𝑀 | type 𝑋 ⟨𝛼⟩ extends 𝐴 = 𝐵

Term declarations 𝑀 F 𝑥 = 𝐸 | (𝐿 𝑥 : 𝐴 [self : 𝐵]).ℓ = 𝐸

Types 𝐴, 𝐵 F Int | 𝛼 | ⊤ | ⊥ | 𝐴 → 𝐵 | ∀(𝛼 ∗𝐴).𝐵 | 𝐴 & 𝐵 | {ℓ :𝐴}
| Trait[𝐴, 𝐵] | 𝑋 ⟨𝑆⟩

Sorts 𝑆 F 𝐴 | 𝐴 % 𝐵

Expressions 𝐸 F 𝑖 | 𝑥 | ⊤ | _𝑥 .𝐸 | 𝐸1 𝐸2 | Λ(𝛼 ∗𝐴).𝐸 | 𝐸 @𝐴 | 𝐸1 , , 𝐸2 | {𝑀} | 𝐸.ℓ
| 𝐸 : 𝐴 | let 𝑥 : 𝐴 = 𝐸1 in 𝐸2 | open 𝐸1 in 𝐸2 | new 𝐸 | 𝐸1ˆ𝐸2
| trait[self : 𝐴] implements 𝐵 inherits 𝐸1 => 𝐸2

Term contexts Γ F • | Γ, 𝑥 : 𝐴
Type contexts Δ F • | Δ, 𝛼 ∗𝐴 | Δ, 𝑋 ⟨𝛼, 𝛽⟩ ↦→ 𝐴

Sort contexts Σ F • | Σ, 𝛼 ↦→ 𝛽

Fig. 1. Syntax of CP.

In fact, our encoding does not only allow L-attributed grammars, any inherited and synthesized
attributes can be implemented by contextual evaluation. Nevertheless, L-attributed grammars
correspond to a one-pass traversal and ensure termination, so they are the most common usage of
attribute grammars and a good example for polymorphic contexts.

Summary. With polymorphic contexts, L-attribute-grammar-like programs are expressed in a
statically safe way. Such programs are not uncommon in real-world applications. Interpreters or
other operations over ASTs are typical applications where non-trivial forms of attributes can occur.
We have shown how variable and intrinsic environments are supported in the previous examples.
Besides the two, more contexts may emerge when a language evolves, such as dynamic scoping,
mutable parameters, and error handling.

There are three advantages of our approach to polymorphic contexts: 1) it enforces the recursive
calls to take the full context as an argument; 2) the polymorphic portion of the context cannot be
fiddled with, i.e., the only thing one can do is to pass it unchanged; 3) nonetheless, polymorphic
contexts can still be refined for particular uses and expose just the right amount of information while
hiding the remaining information. Polymorphic contexts, as well as the ability to express complex
forms of attributes, are a valuable supplement to the modularity of Compositional Programming.

5 FORMALIZATION

This section presents the syntax and semantics of CP. The syntax of CP extends SEDEL [Bi and
Oliveira 2018] with constructs for Compositional Programming (i.e. compositional interfaces,
compositional traits, method patterns, and nested trait composition). The semantics of CP is given
by elaborating to a call-by-name formulation of 𝐹+𝑖 [Bi et al. 2019], a typed calculus combining
disjoint intersection types and polymorphism with BCD-style subtyping [Barendregt et al. 1983].
Nested trait composition is built on top of 𝐹+𝑖 ’s nested composition [Bi et al. 2018]. We prove that
the elaboration to 𝐹+𝑖 is type-safe and coherent.

5.1 Syntax

Fig. 1 gives the syntax of CP. A program is a sequence of declarations followed by an expression.

Declarations. There are two kinds of declarations: type declarations and term declarations. A
type declaration type 𝑋 ⟨𝛼⟩ extends 𝐴 = 𝐵 is used for two purposes: introducing type aliases
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and declaring compositional interfaces. To simplify the formalization, we do not formalize type
declarations with conventional type parameters (i.e. we only consider type declarations with sorts).
However, adding type parameters can be done in standard ways and we have such declarations
in our implementation. The type (or type constructor) 𝑋 is parametrized with a sequence of sorts
⟨𝛼⟩ and can optionally extend another type. There are two forms of term declarations: 𝑥 = 𝐸 is for
simple variable bindings; (𝐿 𝑥 : 𝐴 [self : 𝐵]).ℓ = 𝐸 is a method pattern serving as syntactic sugar
for defining single-field traits conveniently.

Types. Metavariables 𝐴 and 𝐵 range over types. Types include integers Int, type variables 𝛼 , the
top type ⊤, the bottom type ⊥, arrows 𝐴 → 𝐵, disjoint quantification ∀(𝛼 ∗ 𝐴).𝐵, intersections
𝐴& 𝐵, single-field record types {ℓ :𝐴} (multi-field record types are syntax sugar for intersections of
multiple single-field record types) , trait types Trait[𝐴, 𝐵], and type aliases with sorts instantiated
𝑋 ⟨𝑆⟩, where each sort can be either instantiated using a type or a pair of types.

Expressions. Metavariable 𝐸 ranges over expressions. Expressions include integer literals 𝑖 , term
variables 𝑥 , the top value ⊤, lambda abstractions _𝑥.𝐸, term applications 𝐸1 𝐸2, type abstractions
Λ(𝛼 ∗𝐴).𝐸, type applications 𝐸 @𝐴, merges 𝐸1 , , 𝐸2, multi-field records {𝑀}, record projections
𝐸.ℓ , annotated expressions 𝐸 : 𝐴, and (recursive) let bindings let 𝑥 : 𝐴 = 𝐸1 in 𝐸2. There are also a
few trait related constructs. trait[self : 𝐴] implements 𝐵 inherits 𝐸1 => 𝐸2 specifies an explicit self
reference of type 𝐴, a type 𝐵 to implement, an inherited trait expression 𝐸1 and a body expression
𝐸2. The new 𝐸 construct instantiates a trait expression. 𝐸1ˆ𝐸2 is the forwarding expression inherited
from SEDEL [Bi and Oliveira 2018]. Inspired by ML-like modules [MacQueen 1984], open 𝐸1 in 𝐸2
is a new construct for directly accessing fields from a record without explicit projections.

5.2 An Informal Introduction to the Elaboration

The semantics of CP is defined by elaborating to 𝐹+𝑖 extendedwith recursive let bindings. Elaborating
a CP program into a 𝐹+𝑖 expression takes several steps, including desugaring, sort transformation,
type expansion, etc. The elaboration builds on two ideas from the literature: the denotational model
of inheritance by Cook and Palsberg [1989], and generalized Object Algebras [Oliveira et al. 2013].
To better understand the elaboration, let us revisit some of the examples presented in Section 3 and
show their concrete elaborations into CP code using more atomic features, such as record types
and records, and recursive let bindings.

Elaborating compositional interfaces and sorts. Firstly, the compositional interface ExpSig:
type ExpSig<Exp> = {

Lit : Int -> Exp;

Add : Exp -> Exp -> Exp;

};

is translated to an equivalent type using only type parameters:
type ExpSig Exp OExp =

{ Lit : Int -> Trait[Exp,OExp] } &

{ Add : Exp -> Exp -> Trait[Exp,OExp] };

The sort Exp is represented by two type parameters, Exp and OExp, for respectively capturing the
negative and positive occurrences of Exp. Negative occurrences of Exp (at input positions) are kept
unchanged while positive occurrences of Exp (at output positions) are changed to OExp. For Add, the
two parameters of type Exp are negative. Therefore, only the return type of Add is transformed. Since
Add is a constructor, positive occurrences of Exp are further translated to a trait type Trait[Exp,OExp].
As a type synonym, ExpSig and its right-hand side are put into the type context that tracks type
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declarations, among other things. In essence, this transformation is inspired by generalized Object
Algebra interfaces [Oliveira et al. 2013] (see also Section 2.3), and the distinction of positive and
negative occurrences is helpful for expressing dependencies. If we just wanted to model modular
programs without dependencies, then distinguishing between positive and negative occurrences
would not be necessary.

Similarly, the extended compositional interface MulSig<Exp>:
type MulSig<Exp> extends ExpSig<Exp> = {

Mul : Exp -> Exp -> Exp;

};

is translated to a type equivalent to:
type MulSig Exp OExp =

{ Lit : Int -> Trait[Exp,OExp] } &

{ Add : Exp -> Exp -> Trait[Exp,OExp] } &

{ Mul : Exp -> Exp -> Trait[Exp,OExp] };

where the type appearing in the extends clause is expanded by looking up the type context and
intersecting that type with the type on the original right-hand side.

Elaborating traits. The trait family evalNum implements ExpSig:
evalNum = trait implements ExpSig<Eval> => {

(Lit n).eval = n;

(Add e1 e2).eval = e1.eval + e2.eval;

};

which is desugared to:
evalNum = trait [self: Top] implements ExpSig Eval Eval => open self in

{ Lit = \(n: Int) -> trait => { eval = n } } ,,

{ Add = \(e1: Eval) -> \(e2: Eval) -> trait => { eval = e1.eval + e2.eval} };

The sort instantiation <Eval> indicates that there are no dependencies. Therefore, both type param-
eters (Exp and OExp) in the elaborated code are instantiated as Eval. Since no self-type is specified,
the self-reference has type Top by default. We can ignore the open expression for the moment, since
it has no effect in this case, as the self type is Top. Method patterns are desugared to functions
returning traits and multi-field records are desugared to a merge of multiple single-field records.
After type-checking, evalNum is further elaborated into a 𝐹+𝑖 expression:

let evalNum = \(self: Top) ->

{ Lit = \(n: Int) -> \(self: Top) -> { eval = n } } ,,

{ Add = \(e1: Eval) -> \(e2: Eval) -> \(self: Top) -> { eval = e1.eval + e2.eval } }

in ...

The term declaration is elaborated to a let expression and the trait expressions are elaborated to
functions. Since no self-types are specified, the self parameters are all of type Top.

Elaborating child dependencies. printChild also implements ExpSig but contains child dependen-
cies:
printChild = trait implements ExpSig<Eval % Print> => {

(Lit n).print = n.toString;

(Add e1 e2).print = if e2.eval == 0 then e1.print

else "(" ++ e1.print ++ "+" ++ e2.print ++ ")";
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};

This trait is desugared to:

printChild = trait [self: Top] implements ExpSig (Eval&Print) Print => open self in

{ Lit (n: Int) = trait => { print = n.toString } } ,,

{ Add (e1: Eval&Print) (e2: Eval&Print) = trait =>

{ print = if e2.eval == 0 then e1.print

else "(" ++ e1.print ++ "+" ++ e2.print ++ ")" } };

Since printChild instantiates the sort as <Eval % Print>, Exp and OExp are respectively instantiated
as Eval&Print (i.e. the intersection of the two types in <Eval % Print>) and Print (i.e. the second
type in <Eval % Print>). Through some type inference, the arguments with expression types in
the constructors (such as e1 and e2) are of type Eval&Print. This enables eval to be called on e1

and e2 without an implementation of that operation in the current trait. In short, printChild is
elaborated to an expression similar to evalNum except that expressions arguments are of different
type (Eval&Print) from the output. Importantly, for the modular definition of printChild to work, it
is crucial to use different types in the instantiation of Exp for input (negative) positions and output
(positive) positions.

Elaborating self-type annotations. On the other hand, traits with explicit self-type annotations
are desugared differently. For instance, expAdd:

expAdd Exp = trait [self : ExpSig<Exp>] => {

test = new Add (new Lit 4) (new Lit 8);

};

is desugared to:

expAdd = /\Exp. trait [self: ExpSig Exp Exp] => open self in {

test = new Add (new Lit 4) (new Lit 8);

};

The original trait body is wrapped into an open expression so that the constructors/methods exposed
by the self-type are directly in scope. Further elaboration into 𝐹+𝑖 results in:

let expAdd =

/\Exp. \(self : { Lit : Int -> Exp -> Exp } & { Add : Exp -> Exp -> Exp -> Exp }) ->

let Add = self.Add

in let Lit = self.Lit

in { test = letrec self : Exp = Add (letrec self : Exp = Lit 4 self in self)

(letrec self : Exp = Lit 8 self in self)

self

in self }

in ...

The type alias used in specifying the self-type is expanded. The type translation rewrites trait types
as function types. The open self expression is elaborated into a series of let bindings, one for each
record label. The new expressions are elaborated to a lazy fixed point of self, following Cook and
Palsberg denotational model of inheritance [Cook and Palsberg 1989].

Elaborating inheritance and overriding. We now show the elaboration of a trait that additionally
uses inherits and override. An instance is expMul,
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expMul Exp = trait [self : MulSig<Exp>] inherits expAdd @Exp => {

override test = new Mul super.test (new Lit 4);

};

which is elaborated as:

let expMul = /\ Exp. \(self : { Lit : Int -> Exp -> Exp } &

{ Add : Exp -> Exp -> Exp -> Exp } &

{ Mul : Exp -> Exp -> Exp -> Exp }) ->

let super = (expAdd Exp) self

in (super : Top) ,,

let Add = self.Add

in let Lit = self.Lit

in let Mul = self.Mul

in { test = letrec self : Exp = Mul super.test

(letrec self : Exp = Lit 4 self in self)

self

in self }

in ...

The inherited trait expression (expAdd) is elaborated as a function and applied to the self-reference
and the result is bound to super. Then super is merged with the body of the trait. Since test is
overridden, it should be excluded from super; otherwise, a conflict will occur when merging super
with the body. The exclusion of test from super is done by injecting a type annotation Top.

Elaborating nested composition of traits. Finally, we show how the merge of traits is elaborated
using (new evalNum ,, expAdd @Eval).test.eval as an example:

letrec oself : { Lit : Int -> Top -> {eval : Int} } &

{ Add : {eval : Int} -> {eval : Int} -> Top -> {eval : Int} } &

{ test : {eval : Int} } =

\(iself : { Lit : Int -> {eval : Int} -> {eval : Int} } &

{ Add : {eval : Int} -> {eval : Int} -> {eval : Int} -> {eval : Int} })

-> (evalNum iself) ,, ((expAdd {eval : Int} iself) oself)

in oself.test.eval

where we have renamed the outer and inner self as oself and iself for distinction. evalNum ,,

expAdd @Eval is elaborated to a function that returns the merge of respectively applying evalNum and
expAdd @Eval, which are already elaborated as functions, to iself. Since the merged trait is of type
Trait[ExpSig<Eval>,ExpSig<Eval>&{test:Eval}], iself has the elaborated type of ExpSig<Eval>
while oself has the elaborated type of ExpSig<Eval>&{test:Eval}.

5.3 Static Semantics

Overview. Fig. 2 gives an overview of all the relations involved in the elaboration, where →
denotes the transformation flow andd denotes the dependencies between the relations. Firstly,
patterns and multi-field records are desugared by ⟦·⟧. Then the program 𝑃 is elaborated into a
𝐹+𝑖 expression 𝑒 by Δ; Γ ⊢ 𝑃 ⇒ 𝐴 { 𝑒 . During the elaboration process, some transformations
and checks are performed: type synonyms and compositional interfaces 𝑋 ⟨𝑆⟩ are expanded by
Δ, Σ ⊢ 𝐴 ⇒ 𝐵; the right-hand side of a type declaration is transformed by Σ ⊢𝑐𝑝 𝐴 ⇒ 𝐵 for
distinguishing positive and negative occurrences of sorts; the subtyping relation between two types
is checked by 𝐴 <: 𝐵; the disjointness of two types is checked by Δ ⊢ 𝐴 ∗ 𝐵. Both subtyping and
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Δ, Σ ⊢ 𝐴 ⇒ 𝐵

Type expansion
Σ ⊢𝑐𝑝 𝐴 ⇒ 𝐵

Sort transformation
| · |

Type translation

⟦·⟧
Desugaring

// Δ; Γ ⊢ 𝑃 ⇒ 𝐴 { 𝑒

Type-directed elaboration

hh OO 66

��

// 𝐴 <: 𝐵
Subtyping

��

𝐴 ∗𝑎𝑥 𝐵
Disjointness axioms

Δ ⊢ 𝐴 ∗ 𝐵
Disjointness

oo // ⌉𝐴⌈
Top-like types

Fig. 2. The relation of relations.

disjointness checking rely on top-like types (⌉𝐴⌈). The latter further relies on disjointness axioms
(𝐴 ∗𝑎𝑥 𝐵).

Desugaring. The core desugaring rules are:

⟦{𝑀1, . . . , 𝑀𝑛}⟧
def
= ⟦{𝑀1}⟧ , , . . . , , ⟦{𝑀𝑛}⟧

⟦(𝐿 𝑥 : 𝐴 [self : 𝐵]).ℓ = 𝐸⟧ def
=

𝐿 = _𝑥 : 𝐴.⟦trait[self : 𝐵] implements ⊤ inherits ⊤ => {ℓ = 𝐸}⟧
⟦trait[self : 𝐴] implements 𝐵 inherits 𝐸1 => 𝐸2⟧

def
=

trait[self : 𝐴] implements 𝐵 inherits ⟦𝐸1⟧ => open self in ⟦𝐸2⟧
The first rule desugars a multi-field record into an intersection of singleton records. The second rule
desugars a method pattern into an ordinary variable binding to a function that returns a single-field
trait. The last rule implicitly opens self for the trait body so that members declared by the self-type
can be directly accessed without prefixing self.

Type-checking. Fig. 3 shows the selected typing rules. The gray parts could be ignored for the
moment. They will be discussed later in Section 5.5. The type system of CP is bidirectional: under
the contexts Δ and Γ, the inference mode (⇒) synthesizes a type 𝐴 while the checking mode (⇐)
checks against 𝐴. A lot of the rules are presented previously in the literature [Bi et al. 2019], thus
we discuss only the novel ones, which mostly relate to traits and declarations.

The rule T-tyDecl adds a type alias to the type context Δ. The right-hand side, type 𝐴, is
expanded and transformed before it is added to Δ for type-checking the remaining program. Each
sort 𝛼 has a fresh companion variable 𝛽 (corresponding to OExp in the examples) for distinguishing
negative and positive occurrences of sorts. The rule T-tmDecl deals with term declarations. The
bound expression, 𝐸, is inferred with a type 𝐴. Then, 𝑥 of type 𝐴 is added to the term context Γ for
type-checking the remaining program.

The rule T-trait is the most complicated one since multiple types and expressions are involved
and several validity checks are performed. It firstly expands the self type𝐴 and the type to implement
𝐵 as𝐴1 and 𝐵1. Then self is added to Γ in type-checking the inherited expression 𝐸1 and the body 𝐸2.
The inherited expression 𝐸1 is valid only when it is of a trait type Trait[𝐴2, 𝐵2] and the requirement
𝐴2 is met by𝐴1. After validity checking, super can be added to Γ in type-checking the body 𝐸2. The
type of body should be disjoint to the type of the inherited expression 𝐸1 (𝐶 ∗ 𝐵2). Meanwhile, the
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Δ; Γ ⊢ 𝑃 ⇒ 𝐴 { 𝑒

T-tyDecl
fresh 𝛽 Δ;𝛼 ↦→ 𝛽 ⊢ 𝐴 ⇒ 𝐴1

Δ;𝛼 ↦→ 𝛽 ⊢ 𝐵 ⇒ 𝐵1 𝛼 ↦→ 𝛽 ⊢false+ 𝐵1 ⇒ 𝐵2 Δ, 𝑋 ⟨𝛼, 𝛽⟩ ↦→ 𝐴1 & 𝐵2; Γ ⊢ 𝑃 ⇒ 𝐶 { 𝑒

Δ; Γ ⊢ type 𝑋 ⟨𝛼⟩ extends 𝐴 = 𝐵; 𝑃 ⇒ 𝐶 { 𝑒

T-tmDecl
Δ; Γ ⊢ 𝐸 ⇒ 𝐴 { 𝑒1 Δ; Γ, 𝑥 : 𝐴 ⊢ 𝑃 ⇒ 𝐵 { 𝑒2

Δ; Γ ⊢ 𝑥 = 𝐸; 𝑃 ⇒ 𝐵 { let 𝑥 : |𝐴| = 𝑒1 in 𝑒2

Δ; Γ ⊢ 𝐸 ⇒ 𝐴 { 𝑒

T-trait
Δ; • ⊢ 𝐴 ⇒ 𝐴1 Δ; • ⊢ 𝐵 ⇒ 𝐵1 Δ; Γ, self : 𝐴1 ⊢ 𝐸1 ⇒ Trait[𝐴2, 𝐵2] { 𝑒1

𝐴1 <: 𝐴2 Δ; Γ, self : 𝐴1, super : 𝐵2 ⊢ 𝐸2 ⇒ 𝐶 { 𝑒2 𝐶 ∗ 𝐵2 𝐶 & 𝐵2 <: 𝐵1

Δ; Γ ⊢ trait[self : 𝐴] implements 𝐵 inherits 𝐸1 => 𝐸2 ⇒ Trait[𝐴1,𝐶 & 𝐵2]
{ _(self : |𝐴1 |). let super = 𝑒1 self in 𝑒2 , , super

T-mergeTrait
Δ; Γ ⊢ 𝐸1 ⇒ Trait[𝐴1, 𝐵1] { 𝑒1 Δ; Γ ⊢ 𝐸2 ⇒ Trait[𝐴2, 𝐵2] { 𝑒2 Δ ⊢ 𝐵1 ∗ 𝐵2

Δ; Γ ⊢ 𝐸1 , , 𝐸2 ⇒ Trait[𝐴1 &𝐴2, 𝐵1 & 𝐵2] { _(self : |𝐴1 &𝐴2 |). 𝑒1 self , , 𝑒2 self

T-new
Δ; Γ ⊢ 𝐸 ⇒ Trait[𝐴, 𝐵] { 𝑒 𝐵 <: 𝐴

Δ; Γ ⊢ new 𝐸 ⇒ 𝐵 { let self : |𝐵 | = 𝑒 self in self

T-open
Δ; Γ ⊢ 𝐸1 ⇒ {ℓ𝑖 :𝐴𝑖 } { 𝑒1 Δ; Γ, ℓ𝑖 : 𝐴𝑖 ⊢ 𝐸2 ⇒ 𝑒2 { 𝐵 fresh 𝑥

Δ; Γ ⊢ open 𝐸1 in 𝐸2 ⇒ 𝐵 { let 𝑥 = 𝑒1 in let ℓ𝑖 : |𝐴| = 𝑥 .ℓ𝑖 in 𝑒2

Fig. 3. Selected typing rules.

body and the inherited expression should together implement what 𝐵1 specifies (𝐶 &𝐵2 <: 𝐵1). The
rule T-new instantiates a trait. The expression 𝐸 should be of type Trait[𝐴, 𝐵] and the requirement
𝐴 should be met by 𝐵. The rule T-open collects the record types from the inferred type of 𝐸1 and
adds every label type pair to the term context in inferring 𝐸2. Besides a rule for ordinary merges,
T-mergeTrait is a novel rule specially for the merge of two traits. T-mergeTrait says that if the
two expressions are of type Trait[𝐴1, 𝐵1] and Trait[𝐴2, 𝐵2] and 𝐵1 and 𝐵2 are disjoint, then the
merged expression is of type Trait[𝐴1 & 𝐴2, 𝐵1 & 𝐵2]. Inferring the merged traits as a trait type
rather than an intersection type brings several advantages, which will be discussed in Section 7.

Sort transformation. Fig. 4 shows the sort transformation, which is a phase that replaces positive
occurrences of a sort appearing in a type declaration with some other type. Sort transformation is
illustrated in the previous section by elaborating the right-hand side of ExpSig and MulSig. From the
names we cannot distinguish sorts from type parameters and therefore a sort context Σ is needed.
How a sort is transformed is further determined by two conditions: 𝑝 and 𝑐 . The condition 𝑝 tracks
the positions where sorts appear: + indicates a positive position and − indicates a negative position.
Positive and negative positions are treated differently: negative positions are kept unchanged while
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Σ ⊢𝑐𝑝 𝐴 ⇒ 𝐵

TR-positive
𝛼 ↦→ 𝛽 ∈ Σ

Σ ⊢false+ 𝛼 ⇒ 𝛽

TR-ctrPositive
𝛼 ↦→ 𝛽 ∈ Σ

Σ ⊢true+ 𝛼 ⇒ Trait[𝛼, 𝛽]

TR-rcd
Σ ⊢isCapitalized(ℓ)𝑝 𝐴 ⇒ 𝐵

Σ ⊢𝑐𝑝 {ℓ :𝐴} ⇒ {ℓ :𝐵}

TR-arr
Σ ⊢𝑐flip(𝑝) 𝐴 ⇒ 𝐴1 Σ ⊢𝑐𝑝 𝐵 ⇒ 𝐵1

Σ ⊢𝑐𝑝 𝐴 → 𝐵 ⇒ 𝐴1 → 𝐵1

TR-trait
Σ ⊢𝑐flip(𝑝) 𝐴 ⇒ 𝐴1 Σ ⊢𝑐𝑝 𝐵 ⇒ 𝐵1

Σ ⊢𝑐𝑝 Trait[𝐴, 𝐵] ⇒ Trait[𝐴1, 𝐵1]
Δ, Σ ⊢ 𝐴 ⇒ 𝐵

E-tvar
𝛼 ∗𝐴 ∈ Δ

Δ, Σ ⊢ 𝛼 ⇒ 𝛼

E-sig
𝑋 ⟨𝛼, 𝛽⟩ ↦→ 𝐶 ∈ Δ Σ ⊢ 𝑆 ⇒ ⟨𝐴, 𝐵⟩

Δ, Σ ⊢ 𝑋 ⟨𝑆⟩ ⇒ [𝐴/𝛼, 𝐵/𝛽]𝐶
Σ ⊢ 𝑆 ⇒ ⟨𝐴, 𝐵⟩

E-sort1Sort
𝛼 ↦→ 𝛽 ∈ Σ

Σ ⊢ 𝛼 ⇒ ⟨𝛼, 𝛽⟩

E-sort1
Σ ⊢ 𝐴 ⇒ ⟨𝐴,𝐴⟩

E-sort2
Σ ⊢ 𝐴 % 𝐵 ⇒ ⟨𝐴 & 𝐵, 𝐵⟩

Fig. 4. Selected sort transformation and type expansion rules.

positive positions are transformed. Specifically, for a function type𝐴 → 𝐵, 𝑝 is flipped in processing
𝐴 but unchanged in processing 𝐵 (rule TR-arr). The same applies for Trait[𝐴, 𝐵] (rule TR-trait).
The boolean value 𝑐 bookmarks whether the type appears inside a constructor. By default false, 𝑐 is
set to be true when the label of a record is capitalized (rule TR-rcd). According to 𝑝 and 𝑐 , rules
TR-positive and TR-ctrPositive transform the sort 𝛼 to 𝛽 and Trait[𝛼, 𝛽] respectively.

Type expansion. Type expansion plays two roles: eliminating type aliases and ensuring the well-
formedness of the types. It is used, for example, when elaborating the extends clause on MulSig

and implements clauses on evalNum and printChild. Fig. 4 also shows the relevant type expansion
rules. The rule E-tvar checks whether the type variable is in the type context. The rule E-sig
eliminates 𝑋 ⟨𝑆⟩ by looking up 𝑋 in the type context Δ and substituting the negative and positive
occurrences of sorts (𝛼 and 𝛽). An instantiated sort 𝑆 is expanded to a pair of types for substituting
𝛼 and 𝛽 respectively. There are three cases for expanding 𝑆 : if 𝑆 is a sort, then 𝛼 and 𝛽 are kept
abstract (E-sort1Sort); if 𝑆 has only one type, both 𝛼 and 𝛽 are substituted by that type (E-sort1);
otherwise, 𝛼 and 𝛽 are substituted by the intersection of the two types (𝐴 & 𝐵) and the second type
(𝐵) from the pair (E-sort2).

Subtyping. Fig. 5 shows the subtyping rules. Most rules come from multiple sources in previous
work [Barendregt et al. 1983; Bi and Oliveira 2018; Bi et al. 2018, 2019]. The main novelty is the
rule that deal with distributivity of trait types (rules S-distTrait), which essentially follows the
TL-arr rule for functions (which is inspired by BCD subtyping [Barendregt et al. 1983]). The rule
S-distTrait distributes intersections over the Trait type. In the original work on SEDEL, the
elaboration targeted the 𝐹𝑖 calculus, which is a precursor of 𝐹+𝑖 without distributivity rules. Thus, that
work did not have distributivity for traits. The novel distributivity rules for traits are essential for
achieving the nested composition of traits (and trait families). The trait rules and other distributive
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𝐴 <: 𝐵

S-refl
𝐴 <: 𝐴

S-trans
𝐴 <: 𝐵 𝐵 <: 𝐶

𝐴 <: 𝐶

S-topLike
𝐴 <:⌉𝐵⌈

S-bot
⊥ <: 𝐴

S-rcd
𝐴 <: 𝐵

{ℓ :𝐴} <: {ℓ :𝐵}

S-andl
𝐴 & 𝐵 <: 𝐴

S-andr
𝐴 & 𝐵 <: 𝐵

S-and
𝐴 <: 𝐵 𝐴 <: 𝐶

𝐴 <: 𝐵 &𝐶

S-arr
𝐵1 <: 𝐴1 𝐴2 <: 𝐵2

𝐴1 → 𝐴2 <: 𝐵1 → 𝐵2

S-forall
𝐵1 <: 𝐵2 𝐴2 <: 𝐴1

∀(𝛼 ∗𝐴1).𝐵1 <: ∀(𝛼 ∗𝐴2).𝐵2

S-trait
𝐴2 <: 𝐴1 𝐵1 <: 𝐵2

Trait[𝐴1, 𝐵1] <: Trait[𝐴2, 𝐵2]

S-distArr
(𝐴 → 𝐵) & (𝐴 → 𝐶) <: 𝐴 → 𝐵 &𝐶

S-distTrait
Trait[𝐴, 𝐵] & Trait[𝐴,𝐶] <: Trait[𝐴, 𝐵 &𝐶]

S-distRcd
{ℓ :𝐴} & {ℓ :𝐵} <: {ℓ :𝐴 & 𝐵}

S-distAll
∀(𝛼 ∗𝐴).𝐵 & ∀(𝛼 ∗𝐴).𝐶 <: ∀(𝛼 ∗𝐴).𝐵 &𝐶

Fig. 5. Subtyping.

⌉𝐴⌈

TL-top
⌉⊤⌈

TL-and
⌉𝐴⌈ ⌉𝐵⌈
⌉𝐴 & 𝐵⌈

TL-arr
⌉𝐵⌈

⌉𝐴 → 𝐵⌈

TL-rcd
⌉𝐴⌈

⌉{ℓ :𝐴}⌈

TL-all
⌉𝐵⌈

⌉∀(𝛼 ∗𝐴).𝐵⌈

TL-trait
⌉𝐵⌈

⌉Trait[𝐴, 𝐵] ⌈

Fig. 6. Top-like types

rules allow, for example, ExpSig<Eval>&ExpSig<Print> to be subtype of ExpSig<Eval&Print>. The
rule S-topLike is also novel. It states that any type is a subtype of a top-like type.

Top-like types. Top-like types are types isomorphic to ⊤ (i.e. both sub- and supertypes of ⊤),
which was a concept firstly introduced by Barendregt et al. [1983] and then employed by 𝐹+𝑖 and
its precursors [Alpuim et al. 2017; Bi et al. 2019; Oliveira et al. 2016] for proving coherence. We
add a new rule TL-trait for trait types, which states that a trait type is top-like when its provided
interface is top-like. An important property of top-like types is that they are disjoint to any other
types [Alpuim et al. 2017]. Furthermore, the definition of top-like types is crucial for defining
disjointness and the inclusion of types such as Int → ⊤ in the class of top-like types, which is
important to ensure the disjointness of function types and in turn enables merges with multiple
functions. A more detailed discussion can be found in work by Huang and Oliveira [2020].

Disjointness. The disjointness judgment detects the conflicts when merging two expressions of
type 𝐴 and 𝐵. These rules are omitted here since they are merely a combination of the rules from
𝐹+𝑖 (which can be found in Fig. 10) and SEDEL. Interested readers can refer to Appendix A for the
full disjointness rules of CP.
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Types 𝜏 F Int | 𝛼 | ⊤ | ⊥ | 𝜏1 → 𝜏2 | ∀(𝛼 ∗ 𝜏1).𝜏2 | 𝜏1 & 𝜏2 | {ℓ :𝜏}
Expressions 𝑒 F 𝑖 | 𝑥 | ⊤ | _𝑥.𝑒 | 𝑒1 𝑒2 | Λ(𝛼 ∗ 𝜏).𝑒 | 𝑒 𝜏 | 𝑒1 , , 𝑒2 | {ℓ = 𝑒} | 𝑒.ℓ

| let 𝑥 : 𝜏 = 𝑒1 in 𝑒2
Term contexts Γ F • | Γ, 𝑥 : 𝜏
Type contexts Δ F • | Δ, 𝛼 ∗ 𝜏

Fig. 7. 𝐹+
𝑖
syntax extened with (recursive) let bidings.

5.4 The Target Language: 𝐹+𝑖
The dynamic semantics of CP is given by an elaboration to 𝐹+𝑖 , which is our target language.
𝐹+𝑖 is a calculus with disjoint intersection types, disjoint polymorphism, and nested composition.
The semantics and metatheory (including type-safety and coherence) of 𝐹+𝑖 have been studied in
previous work [Bi et al. 2019]. Here we give an overview of 𝐹+𝑖 , focusing on the typing, subtyping,
and disjointness relations, which are the necessary aspects to establish our type-safety theorem
in Section 5.5. For more details about the 𝐹+𝑖 calculus, the interested reader can consult Bi et al.
[2019]’s work.

Syntax. Fig. 7 gives the syntax of 𝐹+𝑖 . Metavariable 𝜏 ranges over types. Types include integers
Int, type variables 𝛼 , the top type ⊤, the bottom type ⊥, arrows 𝜏1 → 𝜏2, disjoint quantification
∀(𝛼 ∗ 𝜏1).𝜏2, intersections 𝜏1 & 𝜏2, and single-field record types {ℓ : 𝜏}. Metavariable 𝑒 ranges
over expressions. Expressions include integer literals 𝑖 , term variables 𝑥 , the top value ⊤, lambda
abstractions _𝑥 .𝑒 , term applications 𝑒1 𝑒2, type abstractions Λ(𝛼 ∗ 𝜏).𝑒 with 𝛼 constrained to be
disjoint with 𝜏 , type applications 𝑒 𝜏 , merges 𝑒1 , , 𝑒2, single-field records {ℓ = 𝑒}, record projections
𝑒.ℓ and (recursive) let expressions let 𝑥 : 𝜏 = 𝑒1 in 𝑒2.

Subtyping. Fig. 8 shows the subtyping rules of the form 𝜏1 <: 𝜏2. The subtyping relation is
reflective (TS-refl) and transitive (TS-trans). Rules for top types (TS-top), bottom types (TS-bot),
function types (TS-arr) and record types (TS-rcd) are standard. The three rules on intersection
types (TS-andL, TS-andR and TS-and) state that 𝜏1 & 𝜏2 is the greatest lower bound for 𝜏1 and 𝜏2.
The BCD-style distributive rules [Barendregt et al. 1983] (TS-distArr, TS-distRcd and TS-distAll)
are particularly interesting, since they enable nested composition.

Typing. Fig. 9 gives the bidirectional type system employed by 𝐹+𝑖 : under the contexts Δ and
Γ, the inference mode (⇒) synthesizes a type 𝜏 from an expression 𝑒 while the checking mode
(⇐) checks the type of an expression against 𝜏 . ⊢ Δ and Δ ⊢ Γ ensure the well-formedness of
contexts. The rule TT-merge infers the merge of two expressions as an intersection type if their
types are disjoint. The rule TT-tapp additionally checks that the supplied type 𝜏1 is disjoint with
the constraining type 𝜏2.

Disjointness. The disjointness judgment (Δ ⊢ 𝜏1 ∗ 𝜏2), shown in Fig. 10, ensures that the merge of
𝜏1 and 𝜏2 is conflict-free. The disjointness judgment further relies on the definition of top-like types
(⌉𝜏 ⌈) and a disjoint axiom (𝜏1 ∗𝑎𝑥 𝜏2). The disjointness axiom contains rules stating that distinct
types are disjoint.

Semantics of 𝐹+𝑖 . The semantics of 𝐹+𝑖 is given by elaborating to 𝐹𝑐𝑜 , a variant of System 𝐹 extended
with products and explicit coercions. Details of 𝐹𝑐𝑜 are beyond the scope of this paper. We refer
interested readers to the original 𝐹+𝑖 paper [Bi et al. 2019]. In the original paper by Bi et al. [2019],
𝐹𝑐𝑜 has a call-by-value semantics. Since 𝐹+𝑖 is define by elaboration to 𝐹𝑐𝑜 it inherits the call-by-value
semantics of 𝐹𝑐𝑜 . Here we assume a call-by-name variant 𝐹𝑐𝑜 , which we expect to be type-sound.
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𝜏1 <: 𝜏2

TS-refl
𝜏 <: 𝜏

TS-trans
𝜏1 <: 𝜏2 𝜏2 <: 𝜏3

𝜏1 <: 𝜏3

TS-top
𝜏 <: ⊤

TS-bot
⊥ <: 𝜏

TS-rcd
𝜏1 <: 𝜏2

{ℓ :𝜏1} <: {ℓ :𝜏2}

TS-andl
𝜏1 & 𝜏2 <: 𝜏1

TS-andr
𝜏1 & 𝜏2 <: 𝜏2

TS-and
𝜏1 <: 𝜏2 𝜏1 <: 𝜏3

𝜏1 <: 𝜏2 & 𝜏3

TS-arr
𝜏3 <: 𝜏1 𝜏2 <: 𝜏4
𝜏1 → 𝜏2 <: 𝜏3 → 𝜏4

TS-topArr
⊤ <: ⊤ → ⊤

TS-topRcd
⊤ <: {ℓ :⊤}

TS-topAll
⊤ <: ∀(𝛼 ∗ ⊤) .⊤

TS-forall
𝜏2 <: 𝜏4 𝜏3 <: 𝜏1

∀(𝛼 ∗ 𝜏1).𝜏2 <: ∀(𝛼 ∗ 𝜏3) .𝜏4

TS-distArr
(𝜏1 → 𝜏2) & (𝜏1 → 𝜏3) <: 𝜏1 → (𝜏2 & 𝜏3)

TS-distRcd
{ℓ :𝜏1} & {ℓ :𝜏2} <: {ℓ :𝜏1 & 𝜏2}

TS-distAll
∀(𝛼 ∗ 𝜏1).𝜏2 & ∀(𝛼 ∗ 𝜏1).𝜏3 <: ∀(𝛼 ∗ 𝜏1).𝜏2 & 𝜏3

Fig. 8. 𝐹+
𝑖
subtyping.

Δ; Γ ⊢ 𝑒 ⇒ 𝜏

TT-top
⊢ Δ Δ ⊢ Γ

Δ; Γ ⊢ ⊤ ⇒ ⊤

TT-nat
⊢ Δ Δ ⊢ Γ

Δ; Γ ⊢ 𝑖 ⇒ Int

TT-var
⊢ Δ Δ ⊢ Γ (𝑥 : 𝐴) ∈ Γ

Δ; Γ ⊢ 𝑥 ⇒ 𝐴

TT-app
Δ; Γ ⊢ 𝑒1 ⇒ 𝜏1 → 𝜏2 Δ; Γ ⊢ 𝑒2 ⇐ 𝜏1

Δ; Γ ⊢ 𝑒1 𝑒2 ⇒ 𝜏2

TT-merge
Δ; Γ ⊢ 𝑒1 ⇒ 𝜏1 Δ; Γ ⊢ 𝑒2 ⇒ 𝜏2 Δ ⊢ 𝜏1 ∗ 𝜏2

Δ; Γ ⊢ 𝑒1 , , 𝑒2 ⇒ 𝜏1 & 𝜏2

TT-anno
Δ; Γ ⊢ 𝑒 ⇐ 𝜏

Δ; Γ ⊢ 𝑒 : 𝜏 ⇒ 𝜏

TT-rcd
Δ; Γ ⊢ 𝑒 ⇒ 𝜏

Δ; Γ ⊢ {ℓ = 𝑒} ⇒ {ℓ :𝜏}

TT-proj
Δ; Γ ⊢ 𝑒 ⇒ {ℓ :𝜏}
Δ; Γ ⊢ 𝑒.ℓ ⇒ 𝜏

TT-tabs
Δ, 𝛼 ∗ 𝜏1; Γ ⊢ 𝑒 ⇒ 𝜏2

Δ; Γ ⊢ Λ(𝛼 ∗ 𝜏1).𝑒 ⇒ ∀(𝛼 ∗ 𝜏1).𝜏2

TT-tapp
Δ; Γ ⊢ 𝑒 ⇒ ∀(𝛼 ∗ 𝜏2).𝜏3 Δ ⊢ 𝜏1 ∗ 𝜏2

Δ; Γ ⊢ 𝑒 𝜏1 ⇒ [𝜏1/𝛼]𝜏3

TT-let
Δ; Γ, 𝑥 : 𝐴 ⊢ 𝑒1 ⇐ 𝐴 Δ; Γ, 𝑥 : 𝐴 ⊢ 𝑒2 ⇒ 𝐵

Δ; Γ ⊢ let 𝑥 : 𝐴 = 𝑒1 in 𝑒2 ⇒ 𝐵

Δ; Γ ⊢ 𝑒 ⇐ 𝜏

TT-abs
Δ ⊢ 𝜏1 Δ; Γ, 𝑥 : 𝜏1 ⊢ 𝑒 ⇐ 𝜏2

Δ; Γ ⊢ _𝑥 .𝑒 ⇐ 𝜏1 → 𝜏2

TT-sub
Δ; Γ ⊢ 𝑒 ⇒ 𝜏2 𝜏2 <: 𝜏1

Δ; Γ ⊢ 𝑒 ⇐ 𝜏1

Fig. 9. 𝐹+
𝑖
typing rules.
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Δ ⊢ 𝜏1 ∗ 𝜏2
TD-topL

⌉𝜏1⌈
Δ ⊢ 𝜏1 ∗ 𝜏2

TD-topR
⌉𝜏2⌈

Δ ⊢ 𝜏1 ∗ 𝜏2

TD-arr
Δ ⊢ 𝜏2 ∗ 𝜏4

Δ ⊢ 𝜏1 → 𝜏2 ∗ 𝜏3 → 𝜏4

TD-andL
Δ ⊢ 𝜏1 ∗ 𝜏3 Δ ⊢ 𝜏2 ∗ 𝜏3

Δ ⊢ 𝜏1 & 𝜏2 ∗ 𝜏3

TD-andR
Δ ⊢ 𝜏1 ∗ 𝜏2 Δ ⊢ 𝜏1 ∗ 𝜏3

Δ ⊢ 𝜏1 ∗ 𝜏2 & 𝜏3

TD-rcdEq
Δ ⊢ 𝜏1 ∗ 𝜏2

Δ ⊢ {ℓ :𝜏1} ∗ {ℓ :𝜏2}

TD-rcdNeq
ℓ1 ≠ ℓ2

Δ ⊢ {ℓ1 :𝜏1} ∗ {ℓ2 :𝜏2}

TD-tvarL
(𝛼 ∗ 𝜏1) ∈ Δ 𝜏1 <: 𝜏2

Δ ⊢ 𝛼 ∗ 𝜏2

TD-tvarR
(𝛼 ∗ 𝜏1) ∈ Δ 𝜏1 <: 𝜏2

Δ ⊢ 𝜏2 ∗ 𝛼

TD-forall
Δ, 𝛼 ∗ 𝜏1 & 𝜏3 ⊢ 𝜏2 ∗ 𝜏4

Δ ⊢ ∀(𝛼 ∗ 𝜏1).𝜏2 ∗ ∀(𝛼 ∗ 𝜏3).𝜏4

TD-ax
𝜏1 ∗𝑎𝑥 𝜏2
Δ ⊢ 𝜏1 ∗ 𝜏2

⌉𝜏 ⌈

TL-top
⌉⊤⌈

TL-and
⌉𝜏1⌈ ⌉𝜏2⌈
⌉𝜏1 & 𝜏2⌈

TL-arr
⌉𝜏2⌈

⌉𝜏1 → 𝜏2⌈

TL-rcd
⌉𝜏 ⌈

⌉{ℓ :𝜏}⌈

TL-all
⌉𝜏2⌈

⌉∀(𝛼 ∗ 𝜏1).𝜏2⌈

Fig. 10. 𝐹+
𝑖
disjointness.

We expect this result to be straightforward since 𝐹𝑐𝑜 is just a minor variant of System F and System
F is known to be type-sound in both call-by-value and call-by-name. The translations from CP to
𝐹+𝑖 and then to 𝐹𝑐𝑜 are unaffected by the choice of evaluation strategy in 𝐹𝑐𝑜 , and simply inherit
the evaluation strategy from 𝐹𝑐𝑜 . As we have mentioned earlier, we also assume lazy recursive let
bindings, which are not present in 𝐹+𝑖 . Lazy recursive let bindings are in fact the main motivation
to switch to a call-by-name semantics, since they are necessary for the encodings of self references.
Although we expect the proof of type-soundness of call-by-name 𝐹𝑐𝑜 and coherence of call-by-name
𝐹+𝑖 to easily hold, we leave such validation for future work.

5.5 Formal Elaboration

𝐹+𝑖 is a subset of CP excluding declarations and trait-related constructs. Therefore, elaborating the
shared constructs is straightforward, and only elaborating constructs specific to CP requires some
explanations.
Let us focus on the the elaborated 𝐹+𝑖 expressions (gray parts) shown in Fig. 3. Intuitively, T-

tmDecl elaborates a term declaration into a let expression, as illustrated by the elaborations on
evalNum, printChild and expAdd in Section 5.2. The gray parts of T-trait and T-new are inherited
from SEDEL, which follows Cook and Palsberg [1989]’s denotational semantics of inheritance.
Concretely, a trait expression is elaborated to a function that takes self as an argument, binds the
application result of 𝑒1 self to super and returns a merge of the body (𝑒2) and super. T-trait is
also illustrated by the elaborations on evalNum, printChild and expAdd. As shown by expAdd, T-new
elaborates the expression into a lazy fixed point of self. T-mergeTrait elaborates the merge of
two traits into a function that takes self as an argument and returns the merge of applying the
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two elaborated traits 𝑒1 and 𝑒2 to self. Note that the type of the self argument for the merged
trait is an intersection of the two self types from the two traits being merged. Elaboration on
evalNum ,, expAdd @Eval illustrates T-mergeTrait. T-open elaborates an open expression into a
sequence of let expressions, one for each field from the record 𝑒2. These let expressions bind labels
to their projections so that 𝑒2 can directly access all the fields from 𝑒1 without explicit projections.
The elaboration on expAdd is a showcase of T-open.

Finally note that CP’s types also need to be translated to 𝐹+𝑖 ’s types, because in 𝐹+𝑖 there is no
Trait[𝐴, 𝐵] construct. All types, except Trait[𝐴, 𝐵] have straightforward translations. Trait types
are translated to function types in 𝐹+𝑖 (following SEDEL) with the rule |Trait[𝐴, 𝐵] | = |𝐴| → |𝐵 |.

5.6 Type Safety and Coherence

The elaboration of CP into 𝐹+𝑖 is type-safe and coherent. We summarize the key results here.
Detailed proofs and other auxiliary lemmas can be found in Appendix B.
The first result is that elaboration is type-safe. To prove this result we need a few results for

some of the auxiliary relations, which are shown next. Note that | · | extends on contexts, denoting
that each CP’s type in the context is translated to a 𝐹+𝑖 ’s type.

Lemma 5.1 (Well-formedness preservation). If Δ, Σ ⊢ 𝐴 ⇒ 𝐵 then |Δ| ⊢ |𝐵 |.
Proof. By induction on the derivation of the judgment. □

Lemma 5.2 (Disjointness axiom preservation). If 𝐴 ∗𝑎𝑥 𝐵 then |𝐴| ∗𝑎𝑥 |𝐵 |.
Proof. Note that |Trait[𝐴, 𝐵] | = |𝐴| → |𝐵 |; the rest are immediate. □

Lemma 5.3 (Subtyping preservation). If 𝐴 <: 𝐵 then |𝐴| <: |𝐵 |.
Proof. By structural induction on the subtyping judgment. □

Lemma 5.4 (Disjointness preservation). If Δ ⊢ 𝐴 ∗ 𝐵 then |Δ| ⊢ |𝐴| ∗ |𝐵 |.
Proof. By structural induction on the disjointness judgment. □

Then the main type-safety theorem is:

Theorem 5.5 (Type-safety). We have that:

• If Δ; Γ ⊢ 𝑃 ⇒ 𝐴 { 𝑒 then |Δ|; |Γ | ⊢ 𝑒 ⇒ |𝐴|.
Proof. By structural induction on the typing judgment. □

The second theorem is the coherence of the elaboration:

Theorem 5.6 (Coherence). Each well-typed CP program has a unique elaboration.

Proof. For each elaboration rule, the elaborated 𝐹+𝑖 expression in the conclusion is uniquely
determined by the elaborated 𝐹+𝑖 expressions in the premises. By the coherence property of 𝐹+𝑖 , we
conclude that each well-typed CP program has a unique elaboration. Therefore CP is coherent. □

Additional Properties. There are more properties proved in the 𝐹+𝑖 paper, including the decidability
of the type system. These properties should easily hold for CP by extending the proofs with a
case for trait types. The cases for trait types are essentially similar to the cases of function types
(trait types are actually encoded as function types in the elaboration to 𝐹+𝑖 ), so the proof extensions
should be straightforward. One thing to notice is that the subtyping relation presented in this paper
is non-algorithmic due to the existence of a transitive rule (S-trans). An algorithmic variant of the
subtyping relation is shown by [Bi et al. 2019]. For proving decidability, we would need to use an
extended version of such algorithmic subtyping with trait types.
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6 CASE STUDIES

To further demonstrate the applicability of CP, we conducted three case studies. The first case
study is a small shallow EDSL for parallel prefix circuits, originally proposed by Hinze [2004] and
further studied by Gibbons and Wu [2014]. The second one is a mini interpreter, which integrates
and extends the examples in Section 3 and Section 4. The last case study is an implementation
of the C0 compiler, inspired by the work of Rendel et al. [2014], which compiles a subset of C to
JVM instructions. In all three case studies, the need for dealing with extensibility and complex
dependencies arises.

6.1 Scans

Overview. Scans [Hinze 2004] is a DSL for describing parallel prefix circuits. Initially, there
are five circuit constructors and an operation on circuits: Identity consists of parallel wires;
Fan connects the leftmost wire to the rest; Above is a vertical combinator; Beside is a horizontal
combinator; Stretch inserts identity wires to stretch the circuit; the operation width computes the
width of a circuit. A few constructs and operations are added later, as extensions: RStretch is similar
to Stretch but stretches the circuit in the opposite direction; depth computes the depth of a circuit;
wellSized checks the well-formedness of a circuit; layout compresses the representation of a circuit.
Moreover, wellSized and layout depend on width, and layout is context-sensitive. Thus, the case
study of circuits is interesting because it contains some forms of dependencies. Implementing
Scans modularly requires an approach not only to solving the EP but also capable of expressing
dependencies. There are already a few implementations written in different languages [Bi et al.
2019; Gibbons and Wu 2014; Zhang and Oliveira 2019]. Still, these implementations are not fully
satisfying. We compare our implementation with respect to these implementations. Note, however,
that there are no dependencies on self-references in this case study. Thus, this case study does not
exercise such a form of dependencies.

Scans in CP. The techniques shown in Section 3 are used in modularizing Scans with CP. The
syntax of Scans is captured by a compositional interface:
type CircuitSig<Circuit> = {

Identity : Int -> Circuit;

Fan : Int -> Circuit;

Above : Circuit -> Circuit -> Circuit;

Beside : Circuit -> Circuit -> Circuit;

Stretch : (List Int) -> Circuit -> Circuit;

};

Operations are modeled as trait families that concretely implement the compositional interface.
For example, the implementation of wellSized is given below:
type WellSized = { wS : Bool };

wellSized = trait implements CircuitSig<Width % WellSized> => {

(Identity n).wS = true;

(Fan n).wS = true;

(Above c1 c2).wS = c1.wS && c2.wS && c1.width == c2.width;

(Beside c1 c2).wS = c1.wS && c2.wS;

(Stretch ns c).wS = c.wS && length ns == c.width;

};

The trait family wellSized implements CircuitSig<Width % WellSized>, indicating that it depends
on another trait family of CircuitSig that implements Width. As discussed in Section 3.2, such

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.



Compositional Programming 1:37

dependency is weak and allows us to, for example, call width on c in Stretch. Though the definitions
of layout and other trait families are omitted here, they can be similarly defined.

New variants. The new constructor RStretch is added by extending the compositional interface:
type NCircuitSig<Circuit> extends CircuitSig<Circuit> = {

RStretch : (List Int) -> Circuit -> Circuit

};

Accordingly, existing trait families are extended with a case for RStretch, for example:
nWellSized = trait implements NCircuitSig<Width % WellSized> inherits wellSized => {

(RStretch ns c).wS = c.wS && length ns == c.width;

};

Similarly, nWidth, nDepth, and nLayout extend their respective trait families.
Finally, we obtain the full implementation of Scans by composing all the operations as well as a

generic trait that constructs a modular circuit (circuit is analogous to expMul in Section 3.1):
scans = new nWidth ,, nDepth ,, nWellSized ,, nLayout ,,

circuit @(Width & Depth & WellSized & Layout);

Scans in Haskell. Gibbons and Wu [2014] implement Scans as a shallow EDSL in Haskell.
Variants of Scans are modeled as functions, thus adding new variants is simple through defining
new functions. However, multiple (possibly dependent) operations are defined using tuples. For
example, wellSized is defined as follows:
type Circuit = (Int, Bool)

identity n = (n, True)

fan n = (n, True)

above c1 c2 = (width c1, wellSized c1 && wellSized c2 && width c1 == width c2)

beside c1 c2 = (width c1 + width c2, wellSized c1 && wellSized c2)

stretch ns c = (sum ns, wellSized c && length ns == width c)

width = fst

wellSized = snd

In essence, we have to provide implementations for both wellSized and width together in a tuple.
Such an implementation is not modular because whenever a new operation is needed, existing
code has to be modified for accommodating new operations.

A follow-up Haskell implementation [Zhang and Oliveira 2019] employs a technique commonly
known as Finally Tagless [Carette et al. 2009], together with a type-class-based encoding of sub-
typing on tuples, to modularize operation extensions. In essence, such an approach simulates
subtyping and inheritance for enabling modular composition of the operations. However, this
comes at the cost of boilerplate code and extra complexity due to additional parametrization that
is needed to make the encoding work. Moreover, explicit delegations are required for defining
dependent operations in the Haskell approach, making the code cumbersome to write. In contrast,
CP avoids those issues by having built-in language support for nested composition. Furthermore,
compositional interfaces/traits and method patterns make the code quite easy to write.

Scans in Scala. Zhang and Oliveira [2019] present a modular solution in Scala by combining
the extensible Interpreter pattern [Wang and Oliveira 2016] and Object Algebras [Oliveira and
Cook 2012]. Scans is modeled by a hierarchy of traits, where the root is an interface describing
the operations a circuit supports while other traits concretely implement that interface. Adding
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new operations is done by defining another trait hierarchy that implements the extended interface
and inherits existing traits. Through covariantly refining the circuit fields to the type of the
extended interface, previously defined operations can be used as dependencies. Although such an
implementation is modular, the extensions are linearly added and the dependencies are strong due
to the use of inheritance to express dependencies. Alternatively, the new trait hierarchy can be
separately defined without inheriting existing ones. This weakens the dependencies but requires
some boilerplate for gluing the hierarchies using mixin composition. For the same example of the
multiple interpretation of Width and WellSized, we need to do extra compositions after defining
them separately:
trait Identity extends IdentityWidth with IdentityWellSized

trait Fan extends FanWidth with FanWellSized

trait Above extends AboveWidth with AboveWellSized

trait Beside extends BesideWidth with BesideWellSized

trait Stretch extends StretchWidth with StretchWellSized

Unlike CP, where the composition is done once in the family level, every trait in Scala needs to be
composed because Scala lacks support for nested composition. Another drawback is that Scala’s
constructors are not virtual. Directly calling new on constructors for creating objects results in
non-modular code. Therefore, Object Algebras [Oliveira and Cook 2012] are used for abstracting
over the constructor calls, resulting in more boilerplate.

Scans in 𝐹+𝑖 . Bi et al. [2019] modularize Scans directly in 𝐹+𝑖 using extensible records. Note that,
because Scans do not have self-reference dependencies, there is no strict need for using traits,
which are not directly supported in 𝐹+𝑖 . The syntax of Scans is defined similarly to CircuitSig

except that Circuit is captured as a type parameter rather than a sort. The operation extensibility
is achieved by defining new record instances while the variant extensibility is achieved by the
intersection types and the merge operator. A key difference is how dependent operations are
defined:
wellSized = {

identity (n : Int) = { wS = true },

fan (n : Int) = { wS = true },

above (c1 : WellSized&Width) (c2 : WellSized&Width) =

{ wS = c1.wS && c2.wS && c1.width == c2.width },

beside (c1 : WellSized) (c2 : WellSized) = { wS = c1.wS && c2.wS },

stretch (ns : List Int) (c : WellSized&Width) =

{ wS = c.wS && length ns == c.width }

};

Note that wellSized is not given a type. Instead, it defines a record with various fields modeling
constructors, and all the “constructor” arguments are explicitly annotated. This illustrates a crucial
difference to the CP solution: while in CP wellSized (and other operations) implement a proper
interface (via implements), in the 𝐹+𝑖 encoding that is not the case. The dependency on width is loosely
expressed by refining the circuit type as WellSized&Width. Such dependency is repeated several
times in above and stretch. The lack of a proper interface when implementing operations allows
for a relatively compact solution in 𝐹+𝑖 , but it has some important disadvantages. By implementing
an interface in CP, we can ensure various things at the point of the operation definition. For
instance, CP checks that: we implement all constructors, and all the constructors are defined with
the right number of parameters and types for the parameters. In 𝐹+𝑖 , such checks are not done when
defining operations, which is very error-prone. Errors like forgetting to implement a constructor or
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Operation

Dependency eval print print(aux) log
Child dependencies ✓
Self dependencies ✓ ✓
Mutual dependencies ✓
Inherited attributes ✓

Table 1. Different kinds of dependencies used in the mini interpreter.

implementing a constructor with the wrong number of parameters or the wrong parameter types
cannot be checked at the definition point, but are delayed to the composition point.

Evaluation. Besides a qualitative analysis of the aforementioned modular implementations, we
further evaluate them in terms of source lines of code (SLOC). To make the comparison fair,
we have adapted their implementations to ensure that all the implementations are written in
a similar programming style and provide the same functionalities. The SLOC for the modular
implementations in Haskell, Scala, 𝐹+𝑖 and CP are 87, 129, 72 and 70 respectively. CP’s solution is
the most compact one among the four implementations, while also being the most modular one.

6.2 Mini Interpreter

Overview. The second case study is a mini interpreter for an expression language. This case study
is larger (around 700 SLOC) and more comprehensive than the previous one. Besides the EP and
simple dependencies, it covers more forms of dependencies. In particular, self dependencies occur
in this case study. Furthermore, the case study contains several uses of S-attributed grammars,
polymorphic contexts, as well as multiple sorts.
The expression language consists of various sublanguages, including numeric and boolean

literals, arithmetic expressions, logical expressions, comparisons, if-then-else branches, variable
bindings, function closures, and function applications. The supported operations include a few
variants of evaluation, pretty-printing, and logging. The sublanguages are separately defined as
features [Prehofer 1997], using different compositional interfaces and trait families. Through nested
composition, these features can be arbitrarily combined to form a product line of interpreters [Pohl
et al. 2005].

Dependencies. The operations on the expression language contain non-trivial dependencies.
Table 1 summarizes the different kinds of dependencies used in the mini interpreter. With techniques
shown in Section 3.2, these dependencies are expressed in a modular way. For example, log is
a simple form of logging, which shows the printing and evaluation results of an expression for
debugging purposes. Here is a simplified logging implementation for numeric expressions:

logNum = trait implements NumSig<(Eval&Print) % Log> => {

(Add e1 e2 [self:Eval&Print]).log = self.print ++ " is " ++ self.eval.toString;

-- other constructors are omitted

};

To express self dependencies on eval and print, we annotate Add’s self-type as Eval&Print.

Polymorphic contexts. There are four different kinds of contexts for evaluation in total: an empty
context (Top); a map from strings to numbers for evaluating variable bindings; a map for dynamic
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scoping; an environment for intrinsic functions. Using techniques shown in Section 4.2, we model
these contexts as polymorphic contexts to make the code with contexts modular and evolvable.

Multi-sorted languages. Examples presented in the paper so far are all based on a single-sorted
expression language. Essentially,CP allows compositional interfaces to be parameterized bymultiple
sorts. This ability is demonstrated by the following code excerpt extracted from this case study:

type CmpSig<Boolean,Numeric> = {

Eq : Numeric -> Numeric -> Boolean;

Cmp : Numeric -> Numeric -> Numeric;

-- other constructors are omitted

};

CmpSig models equality and three-way comparison (also known as the spaceship operator), which
returns 0 if the two operands are equal, 1 if the left operand is greater, or -1 otherwise. They take
Numeric arguments and construct Boolean and Numeric traits respectively. Notice that CmpSig is
developed as an independent feature. It can later be combined with other independently developed
features such as numeric expressions:

expCmp N B = trait [self : NumSig<N>&CmpSig<B,N>] => {

cmp = new Cmp (new Add (new Lit 1) (new Lit 2)) (new Lit 3);

};

In cmp, we construct an expression with the new constructor Cmp, as well as Lit and Add which are
independently developed before.

6.3 C0 Compiler

Overview. The C0 compiler was originally an educational one-pass compiler developed for
the compilation course at Aarhus University. Rendel et al. [2014] translated this compiler into
their encoding of Object Algebras, whereas we will present this case study in our approach with
Compositional Programming. Then we will make a comparison with the implementation by Rendel
et al. [2014], as well as the original non-modular version.
C0 selected a subset of the C programming language, consisting of only integer types, arith-

metic/bitwise/comparison operations, a few control flow statements, functions, and basic I/O. In
other words, it is also a multi-sorted language, whose interfaces are parameterized by Program,
Function, Statement, Expression, etc. A C0 program consists of function declarations and defini-
tions, which will be compiled into Java bytecode. The original implementation was written in Java
and later reimplemented in Scala using Object Algebras by Rendel et al. [2014]. Both implemen-
tations include a bytecode generator from AST nodes to JVM instructions as well as a recursive
descent parser. Since the CP language is currently a research prototype and does not support I/O or
complex string manipulation, we eliminate the parsing phase from this case study. Lexical analysis
is not the core part of C0 and will not affect the validity of our evaluation.

Chained attributes. We have shown various forms of dependencies in terms of S-attributed
grammars in Section 3.2 and introduced polymorphic contexts to tackle L-attributed grammars

in Section 4.3. However, there are still other kinds of dependencies in attribute grammars. In the
C0 compiler, an attribute can depend on both its children and its parent or siblings. For example,
consider an attribute that counts the number of leaf nodes (terminal symbols) occurring to the left
or in the subtree of the current node. The attribute equations together with the production rules of
Lit and Add are listed below:
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𝐸 → 𝑛 {Lit}

𝐸.count𝑠 = 𝐸.count𝑖 + 1 (1)

𝐸0 → 𝐸1 "+" 𝐸2 {Add}

𝐸1 .count𝑖 = 𝐸0.count𝑖 (2)
𝐸2.count𝑖 = 𝐸1.count𝑠 (3)
𝐸0 .count𝑠 = 𝐸2.count𝑠 (4)

Note that count has two roles: the subscript 𝑖 stands for inherited attributes while 𝑠 stands for
synthesized ones.
For terminal symbols, we just add one to the inherited number, as Equation 1 shows. For

nonterminal symbols, there are three attribute evaluation rules: Equation 2 is a trivial inherited
attribute depending on its parent; Equation 3 is more interesting because it depends on its left
sibling; Equation 4 is a trivial synthesized attribute depending on its child. These three equations
compose a traversal of the syntax tree: 𝐸1.count𝑖 inherits from its parent 𝐸0 .count𝑖 and then does
its own computation on the left subtree to obtain 𝐸1.count𝑠 ; 𝐸2.count𝑖 inherits from its left sibling
and then traverses the right subtree to obtain 𝐸2.count𝑠 ; finally 𝐸0 .count𝑠 synthesizes the attribute
from its child.
Such a tree traversal reveals an interesting class of attributes called chained attributes [Kastens

and Waite 1994]. A chained attribute is both inherited and synthesized. If we regard inherited
attributes as Reader Monads and synthesized as Writer, then chained attributes correspond to State

Monads.
In this case study, HasVariables and HasFunctions are chained attributes. They are used to do

bookkeeping for variable and function declarations. Like inherited attributes, we model them
with polymorphic contexts, where the inherited part serves as the context of the corresponding
synthesized part:
type HasVariables = { variables : Map }; -- inherited

type ChainedVariables Ctx = { variables : HasVariables&Ctx -> Map }; -- synthesized

If the chained attribute depends on other attributes, the context can be easily extended as we
described in Section 4.2. Here is an example of extending the context with HasOffset:
type ParamSig<Parameter> = { Param : String -> Parameter };

parameterVariables (Ctx * (HasVariables&HasOffset)) = trait implements

ParamSig<ChainedVariables (HasOffset&Ctx)> => {

(Param id).variables (inh : HasOffset&HasVariables&Ctx) (name : String) =

if name == id then inh.offset else inh.variables name;

};

The constructor Param is used to declare a parameter within a function, and the trait implements
the chained attribute of the variable environment. (Param id).variables will update the previous
environment inh.variables with a new mapping from the given identifier to the current offset
which works as the variable index. Note that, although these two variables have the same name,
the former is a chained attribute while the latter is an inherited attribute. Such a delegation forms a
tree traversal to do bookkeeping for parameter declarations.

Comparision. The code statistics of the aforementioned three C0 implementations are shown in
Table 2. The original Java implementation inlines semantic actions into the handwritten parser.
For the sake of fairness, lexical analysis related lines are not counted and the bytecode prelude is
reformatted in the same style as the other two. Although the original code is slightly shorter thanCP,
it is highly entangled and hinders modularity and extensibility. The operation of code generation is
hardcoded in the parsing functions, so it is impossible to add new operations modularly. What is
worse, there is no data structure for a syntax tree, leaving no space for extension.
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Java (Aarhus University) SLOC Scala (Rendel et al. [2014]) SLOC CP SLOC
Entangled Compiler 235 Generic 140 Maybe Algebra 12
(Tokenizer excluded) Trees, Signatures and Combinators 558 Compositional Interfaces 32

Composition and Assembly 101
Attribute Interfaces 32 Attribute Interfaces 8
Algebra Implementations 191 Trait Implementations 216

Bytecode (Reformatted) 25 Bytecode Prelude 25 Bytecode Prelude 25
Main 14 Main 5 Main Example 21
Total 274 Total 1,052 Total 314

Table 2. Source lines of code for the three implementations of the C0 compiler.

To modularize the original C0 implementation, Rendel et al. [2014] use an extended form of
generalized Object Algebras to model attribute grammars in Scala. It allows L-attributed grammars
with different kinds of dependencies to be modularly defined. Due to the lack of the proper
composition mechanisms in Scala, the attributes cannot be easily composed, and specialized
composition operators have to be explicitly defined. Such boilerplate code largely accounts for the
SLOC reported in “Trees, Signatures and Combinators”. In addition, “Composition and Assembly” is
the handwritten code to deal with various dependencies. Their “Attribute Interfaces” and “Algebra
Implementations” are counterparts of our “Attribute Interfaces” and “Trait Implementations”.

Compared to CP, Rendel et al. [2014]’s approach is significantly more verbose (about 3.5x SLOC).
In CP, we do not need to write boilerplate code for trait composition and only a few lines of
“Compositional Interfaces” are necessary. A workaround they propose to avoid such boilerplate
code is to employ meta-programming for generating the specialized signatures and combinators.
However, their source code will not be type-checked before macro expansion. Compilation errors
will be reported in terms of generated code, which could be confusing for programmers and make
it hard to debug. Nevertheless, their assembly mechanism, which relies on specialized combinators
that have to be handwritten, encodes the pattern of chained attributes and simplifies the algebra
implementations. Our approach of polymorphic contexts is a little more complicated than theirs, but
does not require any specialized combinators and works smoothly with nested trait composition.

7 RELATEDWORK

Mainstream statically typed OOP and virtual methods. Virtual methods in OOP provide a way to
weaken method dependencies. In a virtual method call, such as this.m() in a method of a class A,
the call does not necessarily refer to the implementation of m() in A. Instead, it may refer to a later
implementation in a subclass of A. The choice of the implementation of this.m() depends on which
subclass of A is used to instantiate the object on which this.m() is called. However, virtual methods
alone are insufficient to weaken other kinds of dependencies. Most programming languages tend
to have static references to both constructors and types. For instance, if we refer to a constructor
in Java, say new A(), then the constructor (unlike the method this.m()) will always refer to the
same constructor of class A. Such static dependencies create a tight coupling between the use of the
constructor and the class A, and make programs less modular than they ought to be. Moreover, most
statically typed OOP languages use (static) inheritance pervasively. Inheritance often creates more
coupling than needed between method implementations in subclasses and method implementations
in the superclass. In a subclass declaration, such as class A extends B {...}, B must be some
concrete class, with (possibly) some concrete method implementations. In other words, inheritance
cannot be parametrized, and we cannot program against the interface of the superclass: we must
program against some concrete class implementation.
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CP adopts virtual methods, while also supporting virtual constructors to avoid static references to
constructors. Static references to types, which would typically arise from constructors, are avoided
by using sorts. Moreover, in CP, most uses of inheritance can be replaced by code with weaker
dependencies (see discussion in Section 3.2), thus avoiding the coupling problems introduced by
inheritance. Altogether this leads to code that is more modular and has weaker dependencies than
in conventional statically typed OOP.

Mixins and traits. Single inheritance supported by many class-based OOP languages is insuf-
ficient for code reuse. On the other hand, multiple inheritance is hard to do correctly due to the
existence of the diamond problem. Mixins [Bracha and Cook 1990] provide one form of multi-
ple inheritance. The Jigsaw framework [Bracha 1992] formalizes mixins and provides a set of
operators on mixins. There are other formalizations of mixins proposed for different languages
such as ML-like languages [Ancona and Zucca 2002; Duggan and Sourelis 1996] and Java-like
languages [Flatt et al. 1998; Lagorio et al. 2009]. Traits [Schärli et al. 2003] are an alternative to
mixins. The fundamental difference between traits and mixins is the way of dealing with conflicts
when composing multiple traits/mixins. Mixins implicitly resolve the conflicts according to the
composition order, whereas the programmer must explicitly resolve the conflicts for traits. The trait
model avoids unexpected errors caused by the wrong choice of implementation through implicit
resolution. Furthermore, it makes trait composition associative and commutative, and the order of
traits being composed does not affect semantics (all permutations have the same behavior). This is
in contrast with mixins, where the composition is order-sensitive. Typically classes, mixins, and
traits in statically typed languages (such as Scala) are second-class and do not support dynamic
inheritance. Dynamic languages like JavaScript can encode quite general forms of mixins and
support dynamic inheritance. However, type-checking dynamic inheritance is hard. There is little
work on typing first-class classes/mixins/traits. Takikawa et al. [2012]’s first-class classes in Typed
Racket, Lee et al. [2015]’s tagged objects and Bi and Oliveira [2018]’s first-class traits are three
notable works, which support such features in statically typed languages. Our work follows the
first-class trait model by Bi and Oliveira [2018]: traits in CP are first-class, statically typed, and
support dynamic inheritance.

First-class traits and disjoint intersection types. As discussed in Section 2.4, the work on disjoint

intersection types [Alpuim et al. 2017; Bi et al. 2018, 2019; Oliveira et al. 2016] provides a suitable
foundation for Compositional Programming. In particular, the 𝐹+𝑖 calculus supports disjoint in-
tersection types, disjoint polymorphism, and nested composition, which are key ingredients for
Compositional Programming. However, 𝐹+𝑖 is still a core calculus and is inconvenient to directly
program with. Built upon disjoint intersection types, SEDEL [Bi and Oliveira 2018] is a surface
language that adds high-level abstraction mechanisms, particularly on the support for first-class
traits. However, SEDEL is elaborated to 𝐹𝑖 [Alpuim et al. 2017], which is a predecessor of 𝐹+𝑖 and does
not support nested composition. The design of CP improves on the design of SEDEL. The support
for compositional interfaces, compositional traits, method patterns and nested trait composition are all
novel to CP. Thus, the main advantages of CP over SEDEL are the language mechanisms supporting
virtual constructors, weak references to datatypes, several new mechanisms to express weaker
dependencies (such as compositional interface type refinement), and the ability to compose nested
traits via nested composition.
In addition to the new features designed for Compositional Programming, CP further takes

advantage of the unrestricted intersections brought by targeting to 𝐹+𝑖 in improving the trait model
proposed by SEDEL. The additional support for nested composition on traits not only unifies the
syntax by making the merge operator also work on the inherits and new clauses (see the difference
of the code shown respectively in Section 2.4 and Section 3) but also simplifies the typing rules to
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SEDEL. For example, the typing rule for defining traits in SEDEL is:

Γ, self : 𝐵 ⊢ 𝐸𝑖 ⇒ Trait[𝐵𝑖 ,𝐶𝑖 ] { 𝑒𝑖
𝑖∈1..𝑛

Γ, self : 𝐵, super : 𝐶1 & .. &𝐶𝑛 ⊢ {ℓ𝑗 = 𝐸 ′
𝑗

𝑗 ∈1..𝑚} ⇒ 𝐶 { 𝑒

𝐵 <: 𝐵𝑖
𝑖∈1..𝑛

Γ ⊢ 𝐶1 & .. &𝐶𝑛 &𝐶 𝐶1 & .. &𝐶𝑛 &𝐶 <: 𝐴

Γ ⊢ trait[self : 𝐵] inherits 𝐸𝑖
𝑖∈1..𝑛{ℓ𝑗 = 𝐸 ′

𝑗

𝑗 ∈1..𝑚} : 𝐴 ⇒ Trait[𝐵,𝐴] {
_(self : |𝐵 |). let super = (𝑒𝑖 self)𝑖∈1..𝑛 in super , , 𝑒

This rule, among others, is clearly more complicated than its counterpart (T-trait) in CP. The
complexity is mainly caused by dealing with expression sequences: every expression needs to
be translated and validated. In contrast, CP processes only one expression thanks to the newly
introduced rule mergeTrait. mergeTrait checks the disjointness of two traits and infers their
merge as a trait type rather than an intersection type, thus reducing the complexity and duplication.
Another important benefit of the CP design is the improved support for type inference. For example,
in SEDEL, a type must be provided to instantiate a trait, but this type is inferred in CP. Moreover,
parameters of a method pattern inside a trait can omit types in CP if they are declared by the type
specified in the implements clause. This is quite handy for defining trait families.

Virtual classes and family polymorphism. Ideas such as virtual classes [Ernst et al. 2006; Madsen
and Moller-Pedersen 1989] and family polymorphism [Ernst 2001], extend the idea of virtual meth-
ods to classes. Thus, classes and constructors can themselves be virtual, weakening the dependencies
to classes and constructors. Virtual classes were first introduced in the BETA programming lan-
guage [Madsen et al. 1993]. BETA supports only single, static inheritance. The composition of BETA
programs is done through the fragment system [Knudsen et al. 1994]. The gbeta language [Ernst
1999] extends BETAwithmixins and, more importantly, supports family polymorphism [Ernst 2001].
Family polymorphism is a powerful mechanism for extensible and composable software design,
which can solve the EP [Ernst 2004]. Clarke et al. [2007] classify family polymorphism approaches
into object family approaches and class family approaches. In an object family approach, nested
classes are attributes of objects of the family class. Some examples of object family approaches are
BETA, gbeta, CaesarJ [Aracic et al. 2006] and Newspeak [Bracha et al. 2010]. Whereas in a class
family approach, nested classes are attributes of the family class. Class family approaches include
Concord [Jolly et al. 2004], .FJ [Igarashi et al. 2005], Jx [Nystrom et al. 2004], J& [Nystrom et al.
2006] and Familia [Zhang and Myers 2017]. There are also hybrid approaches like Tribe [Clarke
et al. 2007]. Object family approaches are typically more expressive but require a more complex
dependent type system, e.g. vc [Ernst et al. 2006]. The closest approach is Familia [Zhang and
Myers 2017], which also supports subtype polymorphism, family polymorphism, and parametric
polymorphism but does not support the merge operator.
One difference between CP and the family polymorphism systems is that in those systems,

inheritance is still used as a primary mechanism to express dependencies. Similarly to (regular)
classes, the use of inheritance in family polymorphism sometimes creates more coupling than
necessary between sub- and super-classes/families. In contrast, such dependencies can be weakened
via CP’s support for self-references and compositional interface type refinement, leading to more
modular programs. Another difference is that conflicts are often implicitly resolved based on some
order in those systems (e.g., gbeta uses the composition order and Jx uses the dispatch order).
In contrast, CP adopts an approach where conflicts are explicitly resolved, following the trait
model [Schärli et al. 2003].
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SOP, MDSoC, AOP, and FOP. Subject-oriented programming (SOP) [Harrison and Ossher 1993],
multi-dimensional separation of concerns (MDSoC) [Tarr et al. 1999], aspect-oriented programming

(AOP) [Kiczales et al. 1997], and feature-oriented programming (FOP) [Prehofer 1997] are software
paradigms that share a similar vision of separation of concerns: i.e., separating a program into
different parts so that each part addresses a separate concern. Since in those paradigms, a complete
program has been separated, a composition mechanism to assemble the parts back together is
necessary. Typically SOP, MDSoC, AOP and FOP employ a meta-programming approach to soft-
ware composition. Such meta-programming approaches are usually an extension to an existing
programming language, such as Hyper/J and AspectJ for Java. A source-to-source compiler will
combine the separated aspects before producing plain Java code. Quite often many of those tools
do not fully support modular type-checking or separate compilation.
In contrast, Compositional Programming is a language-based approach, with both clearly de-

fined static and dynamic semantics. The merge operator provides the composition mechanism
in Compositional Programming. What distinguishes the elaboration adopted by CP from general
meta-programming is that the elaboration is completely transparent for a programmer: 1) Type-
checking is done directly in the source language, where type errors (and other well-formedness
errors) in programs are reported in terms of the source rather than the target; 2) Type-checking is
modular: each definition can be type-checked with only its implementation and type signatures
of the dependencies. Worth noting is that the style of elaboration employed by CP to give the
semantics to the language is also adopted by other languages. Most notably, the Glasgow Haskell
Compiler (GHC) elaborates the source language (Haskell) into a small core language [Sulzmann et al.
2007]. Like CP, all type-checking is done at the source level and the elaboration process is trans-
parent to Haskell programmers. In contrast, in many approaches that employ meta-programming,
often there is no source-level type-checking or even some more basic error checking like syntax
well-formedness. Consequently, no modular type-checking is offered and errors are reported on
the generated program, which are hard to understand.

ML modules. The design of CP is partly inspired by ML module systems [MacQueen 1984].
Analogously to compositional interfaces and trait families in CP, ML signatures and structures can
be used to specify and implement the constructors. However, unlike CP, ML modules are neither
extensible nor first-class. There are many proposals to extend the ML modules with additional
expressiveness, such as making modules first-class [Russo 2000] or recursive [Russo 2001]. Together
with other features, ML modules can also be used in solving the EP [Nakata and Garrigue 2006].

Scala. CP is also influenced by Scala [Odersky et al. 2004], where features such as intersection
types, traits, and self-types are shared. As compared in Section 2.4, Scala’s traits are not first-class
and do not support dynamic inheritance and nested composition. Nevertheless, Scala supports
virtual types [Igarashi and Pierce 1999; Madsen and Moller-Pedersen 1989], which can be used for
simulating family polymorphism but in a much more verbose way [Odersky and Zenger 2005]. In
CP, sorts are elaborated to type parameters. Another option is to use virtual types. The strengths
and weaknesses of type parameters and virtual types are summarized by Bruce et al. [1998]: type
parameters are flexible in composing and decomposing types while virtual types are good at
specifying mutually recursive families of classes whose relationships are preserved in the derived
family. Type parameters are a natural choice for CP since the underlying 𝐹+𝑖 calculus supports
disjoint polymorphism. In future work, we would like to explore design with virtual types.

Algebraic signatures and Object Algebras. Readers familiar with algebraic signatures [Guttag
and Horning 1978] used in algebraic specification languages may observe some similarities to
compositional interfaces. Algebraic signatures also allow the definition of constructors. However,
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the semantics of constructors in compositional interfaces differs from those in conventional algebraic
signatures. The key difference is that the positive and negative occurrences of sorts are distinguished
in CP, which is important to support an advanced form of modular dependencies but not well-
supported with algebraic signatures.
Oliveira and Cook [2012] explored an encoding of algebraic signatures in OOP languages,

yielding a solution to the EP called Object Algebras. Other design patterns, such as Polymorphic

Embeddings [Hofer et al. 2008] and Finally Tagless [Carette et al. 2009] use similar encodings.
Such encodings originate from the work by Hinze [2006] and Oliveira et al. [2006b]. Hinze [2006]
showed how to model Church encodings of GADTs [Cheney and Hinze 2002] using Haskell type
classes. Oliveira et al. [2006b] then showed that such type class based encoding can also solve
the EP. Object Algebras use parametric interfaces and classes to represent and implement the
algebraic signatures, respectively. As discussed in Section 2.3, Object Algebras, in their basic
form, are hard to be composed and express dependencies. These limitations are later addressed
in Scala by means of generalized Object Algebras and intersection types, together with specialized
combinators [Oliveira et al. 2013; Rendel et al. 2014]. However, the Scala approaches based on
reflection or meta-programming have important drawbacks as discussed in Section 6.3. In contrast,
CP has built-in language support for sorts and nested composition, which is more convenient to
use and avoids the use of reflection or meta-programming techniques.

Alternatives to context evolution. There are other approaches to context evolution.Monads [Wadler
1992], and in particular Reader Monads, can be helpful for context evolution. Nevertheless, to deal
with multiple contexts we would like to have multiple Reader Monads. Unfortunately, this causes
some issues in a monadic setting. A notorious problem with Monads is that the composition of
two Monads (which would be useful to compose contexts) is not always a Monad. Thus there is no
simple way to compose multiple Monads in general. It is possible to use Monad transformers [Liang
et al. 1995] to compose multiple Monads of different kinds (e.g. a Reader and a Writer Monad,
or a Reader and the IO Monad). However, composing Monads of the same kind (like two Reader
Monads) is problematic. Only advanced techniques [Jaskelioff 2008; Schrijvers and Oliveira 2011],
which require significant sophistication, improve on traditional Monad transformers and can deal
smoothly with multiple modular contexts. Implicit context propagation [Inostroza and Storm 2015]
is another approach in OOP, which requires writing boilerplate code for adapting previous code to
accept new contexts (although such boilerplate can be generated). Polymorphic contexts provide
us with a simple approach to modularly handle them without changing the existing code, while
keeping strong static type safety.

8 CONCLUSION

We have presented key concepts of Compositional Programming together with a language design
and implementation called CP. CP’s support for compositional interfaces, compositional traits,
virtual constructors, and method patterns enables a programming style that allows programs with
non-trivial dependencies to be modularized. The applicability of CP is demonstrated by various
examples and case studies. The calculus that captures the essence of CP is proved to be type-safe.
We envision Compositional Programming as an alternative programming style and paradigm

to what is currently offered in both functional programming and object-oriented programming.
Compositional Programming borrows many ideas from both paradigms. The style of Compositional
Programming presented in this paper is essentially a purely functional programming style and
draws inspiration from languages like Haskell. A purely functional style has benefits in terms of
reasoning about programs and it also simplifies some issues related to the composition of code.
Multiple inheritance in the presence of mutable state is a notorious problem, for instance. On the
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other hand, Compositional Programming also borrows ideas from object-oriented programming,
namely by employing subtyping and nested composition (which is closely related to inheritance).
This mix of ideas, together with some new ideas, results in a language that supports highly modular
programs in a natural way.

Future work. As CP is a prototype design for Compositional Programming, there is still a lot of
room for making it more expressive and practical. Some possible directions for future work include
the addition of recursive types and type constructors, mutable state for modeling imperative objects,
and improvements on type inference.

In our view, the addition of recursive types is most pressing as there are many use cases for such
signatures. For example, with recursive types, we can model binary methods [Bruce et al. 1996], or
operations that return the same type that is being processed. For example, with recursive types,
we should be able to model the double operation described by Zenger and Odersky [2005]. This
operation doubles the literals in an arithmetic expression, where each constructor implements the
following interface:

type Dbl = mu Exp. { double : Exp };

Exp is captured as a recursive type. On the other hand, supporting type constructors allows us to
model, for example, the compositional interface of streams adapted from Biboudis et al. [2015]’s
work:

type StreamSig<F : Type -> Type> = {

Source : forall T. Array T -> F T;

Map : forall T R. (T -> R) -> F T -> F R;

FlatMap : forall T R. (T -> F R) -> F T -> F R;

Filter : (T -> Bool) -> F T -> F T;

};

where the sort F is a type constructor (i.e. a function on types). Extending CP with recursive
types and type constructors is non-trivial. The first step is to study how recursive types and type
constructors interact with disjoint intersection types and other features of CP.

Although the programming style of CP is functional, a natural question is whether the ideas of
Compositional Programming can be adapted into a programming model with imperative objects.
There are several challenges here. One of them is to see how mutable state can be integrated into
calculi with disjoint intersection types and a merge operator. A starting point in this direction is
the work by Blaauwbroek [2017], which studies the addition of mutable references into calculus
with intersection types and a merge operator. Another general challenge is that, once imperative
objects are supported, we must face the issues of multiple inheritance in the presence of mutable
state, which is a well-known source of problems.

Finally,CP has some support for type inference, such as inferring the constructor parameters from
the implements clause. However, this support is rather limited. In particular, uses of polymorphic
definitions must explicitly pass all type arguments. It will be interesting to investigate local type
inference [Pierce and Turner 2000] to infer some of those arguments and improve the convenience
of using polymorphic definitions. A more ambitious direction would be looking into MLsub [Dolan
and Mycroft 2017] and see whether it would be possible to adapt or extend MLsub type inference
to CP. The work by van den Berg [2020] is a starting point in this direction.
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A FULL TYPE SYSTEM

Δ, Σ ⊢ 𝐴 ⇒ 𝐵

E-top
Δ, Σ ⊢ ⊤ ⇒ ⊤

E-bot
Δ, Σ ⊢ ⊥ ⇒ ⊥

E-int
Δ, Σ ⊢ Int ⇒ Int

E-tvar
𝛼 ∗𝐴 ∈ Δ

Δ, Σ ⊢ 𝛼 ⇒ 𝛼

E-sig
𝑋 ⟨𝛼, 𝛽⟩ ↦→ 𝐶 ∈ Δ Σ ⊢ 𝑆 ⇒ ⟨𝐴, 𝐵⟩

Δ, Σ ⊢ 𝑋 ⟨𝑆⟩ ⇒ [𝐴/𝛼, 𝐵/𝛽]𝐶

E-arr
Δ, Σ ⊢ 𝐴 ⇒ 𝐴1 Δ, Σ ⊢ 𝐵 ⇒ 𝐵1

Δ, Σ ⊢ 𝐴 → 𝐵 ⇒ 𝐴1 → 𝐵1

E-and
Δ, Σ ⊢ 𝐴 ⇒ 𝐴1 Δ, Σ ⊢ 𝐵 ⇒ 𝐵1

Δ, Σ ⊢ 𝐴 & 𝐵 ⇒ 𝐴1 & 𝐵1

E-trait
Δ, Σ ⊢ 𝐴 ⇒ 𝐴1 Δ, Σ ⊢ 𝐵 ⇒ 𝐵1

Δ, Σ ⊢ Trait[𝐴, 𝐵] ⇒ Trait[𝐴1, 𝐵1]

E-rcd
Δ, Σ ⊢ 𝐴 ⇒ 𝐵

Δ, Σ ⊢ {ℓ :𝐴} ⇒ {ℓ :𝐵}

E-all
Δ, Σ ⊢ 𝐴 ⇒ 𝐴1 Δ, 𝛼 ∗𝐴1 ⊢ 𝐵 ⇒ 𝐵1

Δ, Σ ⊢ ∀(𝛼 ∗𝐴).𝐵 ⇒ ∀(𝛼 ∗𝐴1).𝐵1

Σ ⊢ 𝑆 ⇒ ⟨𝐴, 𝐵⟩

E-sort1Sort
𝛼 ↦→ 𝛽 ∈ Σ

Σ ⊢ 𝛼 ⇒ ⟨𝛼, 𝛽⟩

E-sort1
Σ ⊢ 𝐴 ⇒ ⟨𝐴,𝐴⟩

E-sort2
Σ ⊢ 𝐴 % 𝐵 ⇒ ⟨𝐴 & 𝐵, 𝐵⟩

Σ ⊢𝑐𝑝 𝐴 ⇒ 𝐵

TR-top
Σ ⊢𝑐𝑝 ⊤ ⇒ ⊤

TR-bot
Σ ⊢𝑐𝑝 ⊥ ⇒ ⊥

TR-int
Σ ⊢𝑐𝑝 Int ⇒ Int

TR-positive
𝛼 ↦→ 𝛽 ∈ Σ

Σ ⊢false+ 𝛼 ⇒ 𝛽

TR-ctrPositive
𝛼 ↦→ 𝛽 ∈ Σ

Σ ⊢true+ 𝛼 ⇒ Trait[𝛼, 𝛽]

TR-tvar
Σ ⊢𝑐𝑝 𝛼 ⇒ 𝛼

TR-rcd
Σ ⊢isCapitalized(ℓ)𝑝 𝐴 ⇒ 𝐵

Σ ⊢𝑐𝑝 {ℓ :𝐴} ⇒ {ℓ :𝐵}

TR-arr
Σ ⊢𝑐flip(𝑝) 𝐴 ⇒ 𝐴1 Σ ⊢𝑐𝑝 𝐵 ⇒ 𝐵1

Σ ⊢𝑐𝑝 𝐴 → 𝐵 ⇒ 𝐴1 → 𝐵1

TR-trait
Σ ⊢𝑐flip(𝑝) 𝐴 ⇒ 𝐴1 Σ ⊢𝑐𝑝 𝐵 ⇒ 𝐵1

Σ ⊢𝑐𝑝 Trait[𝐴, 𝐵] ⇒ Trait[𝐴1, 𝐵1]

TR-and
Σ ⊢𝑐𝑝 𝐴 ⇒ 𝐴1 Σ ⊢𝑐𝑝 𝐵 ⇒ 𝐵1

Σ ⊢𝑐𝑝 𝐴 & 𝐵 ⇒ 𝐴1 & 𝐵1

TR-all
Σ ⊢𝑐𝑝 𝐴 ⇒ 𝐴1 Σ\𝛼 ⊢𝑐𝑝 𝐵 ⇒ 𝐵1

Σ ⊢𝑐𝑝 ∀(𝛼 ∗𝐴).𝐵 ⇒ ∀(𝛼 ∗𝐴1).𝐵1
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𝐴 <: 𝐵

S-refl
𝐴 <: 𝐴

S-trans
𝐴 <: 𝐵 𝐵 <: 𝐶

𝐴 <: 𝐶

S-topLike
𝐴 <:⌉𝐵⌈

S-bot
⊥ <: 𝐴

S-rcd
𝐴 <: 𝐵

{ℓ :𝐴} <: {ℓ :𝐵}

S-andl
𝐴 & 𝐵 <: 𝐴

S-andr
𝐴 & 𝐵 <: 𝐵

S-arr
𝐵1 <: 𝐴1 𝐴2 <: 𝐵2

𝐴1 → 𝐴2 <: 𝐵1 → 𝐵2

S-and
𝐴 <: 𝐵 𝐴 <: 𝐶

𝐴 <: 𝐵 &𝐶

S-forall
𝐵1 <: 𝐵2 𝐴2 <: 𝐴1

∀(𝛼 ∗𝐴1).𝐵1 <: ∀(𝛼 ∗𝐴2).𝐵2

S-trait
𝐴2 <: 𝐴1 𝐵1 <: 𝐵2

Trait[𝐴1, 𝐵1] <: Trait[𝐴2, 𝐵2]

S-distArr
(𝐴 → 𝐵) & (𝐴 → 𝐶) <: 𝐴 → 𝐵 &𝐶

S-distTrait
Trait[𝐴, 𝐵] & Trait[𝐴,𝐶] <: Trait[𝐴, 𝐵 &𝐶]

S-distRcd
{ℓ :𝐴} & {ℓ :𝐵} <: {ℓ :𝐴 & 𝐵}

S-distAll
∀(𝛼 ∗𝐴).𝐵 & ∀(𝛼 ∗𝐴).𝐶 <: ∀(𝛼 ∗𝐴).𝐵 &𝐶

⌉𝐴⌈

TL-top
⌉⊤⌈

TL-and
⌉𝐴⌈ ⌉𝐵⌈
⌉𝐴 & 𝐵⌈

TL-arr
⌉𝐵⌈

⌉𝐴 → 𝐵⌈

TL-rcd
⌉𝐴⌈

⌉{ℓ :𝐴}⌈

TL-all
⌉𝐵⌈

⌉∀(𝛼 ∗𝐴).𝐵⌈

TL-trait
⌉𝐵⌈

⌉Trait[𝐴, 𝐵] ⌈

Δ ⊢ 𝐴 ∗ 𝐵

D-topL
⌉𝐴⌈

Δ ⊢ 𝐴 ∗ 𝐵

D-topR
⌉𝐵⌈

Δ ⊢ 𝐴 ∗ 𝐵

D-arr
Δ ⊢ 𝐴2 ∗ 𝐵2

Δ ⊢ 𝐴1 → 𝐴2 ∗ 𝐵1 → 𝐵2

D-andL
Δ ⊢ 𝐴1 ∗ 𝐵 Δ ⊢ 𝐴2 ∗ 𝐵

Δ ⊢ 𝐴1 &𝐴2 ∗ 𝐵

D-andR
Δ ⊢ 𝐴 ∗ 𝐵1 Δ ⊢ 𝐴 ∗ 𝐵2

Δ ⊢ 𝐴 ∗ 𝐵1 & 𝐵2

D-rcdEq
Δ ⊢ 𝐴 ∗ 𝐵

Δ ⊢ {ℓ :𝐴} ∗ {ℓ :𝐵}

D-rcdNeq
ℓ1 ≠ ℓ2

Δ ⊢ {ℓ1 :𝐴} ∗ {ℓ2 :𝐵}

D-tvarL
(𝛼 ∗𝐴) ∈ Δ 𝐴 <: 𝐵

Δ ⊢ 𝛼 ∗ 𝐵

D-tvarR
(𝛼 ∗𝐴) ∈ Δ 𝐴 <: 𝐵

Δ ⊢ 𝐵 ∗ 𝛼

D-forall
Δ, 𝛼 ∗𝐴1 &𝐴2 ⊢ 𝐵1 ∗ 𝐵2

Δ ⊢ ∀(𝛼 ∗𝐴1).𝐵1 ∗ ∀(𝛼 ∗𝐴2).𝐵2

D-trait
Δ ⊢ 𝐵1 ∗ 𝐵2

Δ ⊢ Trait[𝐴1, 𝐵1] ∗ Trait[𝐴2, 𝐵2]

D-traitArr
Δ ⊢ 𝐵1 ∗ 𝐵2

Δ ⊢ Trait[𝐴1, 𝐵1] ∗𝐴2 → 𝐵2

D-arrTrait
Δ ⊢ 𝐵1 ∗ 𝐵2

Δ ⊢ 𝐴1 → 𝐵1 ∗ Trait[𝐴2, 𝐵2]

D-ax
𝐴 ∗𝑎𝑥 𝐵
Δ ⊢ 𝐴 ∗ 𝐵

𝐴 ∗𝑎𝑥 𝐵
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Dax-intArr
Int ∗𝑎𝑥 𝐴1 → 𝐴2

Dax-intRcd
Int ∗𝑎𝑥 {ℓ :𝐴}

Dax-intAll
Int ∗𝑎𝑥 ∀(𝛼 ∗ 𝐵1).𝐵2

Dax-intTrait
Int ∗𝑎𝑥 Trait[𝐴, 𝐵]

Dax-arrAll
𝐴1 → 𝐴2 ∗𝑎𝑥 ∀(𝛼 ∗ 𝐵1).𝐵2

Dax-arrRcd
𝐴1 → 𝐴2 ∗𝑎𝑥 {ℓ :𝐵}

Dax-arrTrait
𝐴1 → 𝐴2 ∗𝑎𝑥 Trait[𝐴, 𝐵]

Dax-arrAll
∀(𝛼 ∗𝐴1).𝐴2 ∗𝑎𝑥 {ℓ :𝐵}

Dax-arrTrait
∀(𝛼 ∗𝐴1).𝐴2 ∗𝑎𝑥 Trait[𝐴, 𝐵]

Note: For each 𝐴 ∗𝑎𝑥 𝐵 we have a symmetric rule 𝐵 ∗𝑎𝑥 𝐴.

Δ; Γ ⊢ 𝑃 ⇒ 𝐴 { 𝑒

T-tyDecl
fresh 𝛽 Δ;𝛼 ↦→ 𝛽 ⊢ 𝐴 ⇒ 𝐴1

Δ;𝛼 ↦→ 𝛽 ⊢ 𝐵 ⇒ 𝐵1 𝛼 ↦→ 𝛽 ⊢false+ 𝐵1 ⇒ 𝐵2 Δ, 𝑋 ⟨𝛼, 𝛽⟩ ↦→ 𝐴1 & 𝐵2; Γ ⊢ 𝑃 ⇒ 𝐶 { 𝑒

Δ; Γ ⊢ type 𝑋 ⟨𝛼⟩ extends 𝐴 = 𝐵; 𝑃 ⇒ 𝐶 { 𝑒

T-tmDecl
Δ; Γ ⊢ 𝐸 ⇒ 𝐴 { 𝑒1 Δ; Γ, 𝑥 : 𝐴 ⊢ 𝑃 ⇒ 𝐵 { 𝑒2

Δ; Γ ⊢ 𝑥 = 𝐸; 𝑃 ⇒ 𝐵 { let 𝑥 : |𝐴| = 𝑒1 in 𝑒2

Δ; Γ ⊢ 𝐸 ⇒ 𝐴 { 𝑒

T-top
Δ; Γ ⊢ ⊤ ⇒ ⊤ { ⊤

T-nat
Δ; Γ ⊢ 𝑖 ⇒ Int { 𝑖

T-var
(𝑥 : 𝐴) ∈ Γ

Δ; Γ ⊢ 𝑥 ⇐ 𝐴 { 𝑥

T-app
Δ; Γ ⊢ 𝐸1 ⇒ 𝐴1 → 𝐴2 { 𝑒1 Δ; Γ ⊢ 𝐸2 ⇐ 𝐴1 { 𝑒2

Δ; Γ ⊢ 𝐸1 𝐸2 ⇒ 𝐴2 { 𝑒1 𝑒2

T-anno
Δ; • ⊢ 𝐴 ⇒ 𝐵 Δ; Γ ⊢ 𝐸 ⇐ 𝐵 { 𝑒

Δ; Γ ⊢ 𝐸 : 𝐴 ⇒ 𝐵 { 𝑒 : |𝐵 |

T-rcd
Δ; Γ ⊢ 𝐸 ⇒ 𝐴 { 𝑒

Δ; Γ ⊢ {ℓ = 𝐸} ⇒ {ℓ :𝐴} { 𝑒

T-proj
Δ; Γ ⊢ 𝐸 ⇒ {ℓ :𝐴} { 𝑒

Δ; Γ ⊢ 𝐸.ℓ ⇒ 𝐴 { 𝑒

T-tabs
Δ; • ⊢ 𝐴 ⇒ 𝐴1 Δ, 𝛼 ∗𝐴1; Γ ⊢ 𝐸 ⇒ 𝐵 { 𝑒

Δ; Γ ⊢ Λ(𝛼 ∗𝐴).𝐸 ⇒ ∀(𝛼 ∗ |𝐴1 |).𝐵 { 𝑒

T-tapp
Δ; • ⊢ 𝐴 ⇒ 𝐴1 Δ; Γ ⊢ 𝐸 ⇒ ∀(𝛼 ∗ 𝐵).𝐶 { 𝑒 Δ ⊢ 𝐴1 ∗ 𝐵

Δ; Γ ⊢ 𝐸 @𝐴 ⇒ [𝐴1/𝛼]𝐶 { 𝑒 |𝐴1 |
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T-let
Δ; • ⊢ 𝐴 ⇒ 𝐴1 Δ; Γ, 𝑥 : 𝐴1 ⊢ 𝐸1 ⇐ 𝐴1 { 𝑒1 Δ; Γ, 𝑥 : 𝐴1 ⊢ 𝐸2 ⇒ 𝐵 { 𝑒2

Δ; Γ ⊢ let 𝑥 : 𝐴 = 𝐸1 in 𝐸2 ⇒ 𝐵 { let 𝑥 : |𝐴1 | = 𝑒1 in 𝑒2

T-mergeTrait
Δ; Γ ⊢ 𝐸1 ⇒ Trait[𝐴1, 𝐵1] { 𝑒1 Δ; Γ ⊢ 𝐸2 ⇒ Trait[𝐴2, 𝐵2] { 𝑒2 Δ ⊢ 𝐵1 ∗ 𝐵2

Δ; Γ ⊢ 𝐸1 , , 𝐸2 ⇒ Trait[𝐴1 &𝐴2, 𝐵1 & 𝐵2] { _(self : |𝐴1 &𝐴2 |). 𝑒1 self , , 𝑒2 self

T-merge
Δ; Γ ⊢ 𝐸1 ⇒ 𝐴1 { 𝑒1 Δ; Γ ⊢ 𝐸2 ⇒ 𝐴2 { 𝑒2 Δ ⊢ 𝐴1 ∗𝐴2

Δ; Γ ⊢ 𝐸1 , , 𝐸2 ⇒ 𝐴1 &𝐴2 { 𝑒1 , , 𝑒2

T-new
Δ; Γ ⊢ 𝐸 ⇒ Trait[𝐴, 𝐵] { 𝑒 𝐵 <: 𝐴

Δ; Γ ⊢ new 𝐸 ⇒ 𝐵 { let self : |𝐵 | = 𝑒 self in self

T-open
Δ; Γ ⊢ 𝐸1 ⇒ {ℓ𝑖 :𝐴𝑖 } { 𝑒1 Δ; Γ, ℓ𝑖 : 𝐴𝑖 ⊢ 𝐸2 ⇒ 𝑒2 { 𝐵 fresh 𝑥

Δ; Γ ⊢ open 𝐸1 in 𝐸2 ⇒ 𝐵 { let 𝑥 = 𝑒1 in let ℓ𝑖 : |𝐴| = 𝑥 .ℓ𝑖 in 𝑒2

T-trait
Δ; • ⊢ 𝐴 ⇒ 𝐴1 Δ; • ⊢ 𝐵 ⇒ 𝐵1 Δ; Γ, self : 𝐴1 ⊢ 𝐸1 ⇒ Trait[𝐴2, 𝐵2] { 𝑒1

𝐴1 <: 𝐴2 Δ; Γ, self : 𝐴1, super : 𝐵2 ⊢ 𝐸2 ⇒ 𝐶 { 𝑒2 𝐶 ∗ 𝐵2 𝐶 & 𝐵2 <: 𝐵1

Δ; Γ ⊢ trait[self : 𝐴] implements 𝐵 inherits 𝐸1 => 𝐸2 ⇒ Trait[𝐴1,𝐶 & 𝐵2]
{ _(self : |𝐴1 |). let super = 𝑒1 self in 𝑒2 , , super

T-forward
Δ; Γ ⊢ 𝐸1 ⇒ Trait[𝐴, 𝐵] { 𝑒1 Δ; Γ ⊢ 𝐸2 ⇐ 𝐴 { 𝑒2

Δ; Γ ⊢ 𝐸1ˆ𝐸2 ⇒ 𝐵 { 𝑒1 𝑒2

Δ; Γ ⊢ 𝐸 ⇐ 𝐴 { 𝑒

T-abs
Δ; Γ, 𝑥 : 𝐴 ⊢ 𝐸 ⇐ 𝐵 { 𝑒

Δ; Γ ⊢ _𝑥.𝐸 ⇐ 𝐴 → 𝐵 { _𝑥.𝐸

T-sub
Δ; Γ ⊢ 𝐸 ⇒ 𝐵 { 𝑒 𝐵 <: 𝐴

Δ; Γ ⊢ 𝐸 ⇐ 𝐴 { 𝑒

|Trait[𝐴, 𝐵] | = |𝐴| → |𝐵 |
|𝐴 → 𝐵 | = |𝐴| → |𝐵 |
|𝐴 & 𝐵 | = |𝐴| & |𝐵 |
|{ℓ :𝐴}| = {ℓ : |𝐴|}

|∀(𝛼 ∗𝐴).𝐵 | = ∀(𝛼 ∗ |𝐴|).|𝐵 |
|𝐴| = 𝐴

B METATHEORY

Lemma B.1 (Well-formedness preservation). If Δ, Σ ⊢ 𝐴 ⇒ 𝐵 then |Δ| ⊢ |𝐵 |.

Proof. By simple induction on the derivation of the judgment. □
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Lemma B.2 (Disjointness axiom preservation). If 𝐴 ∗𝑎𝑥 𝐵 then |𝐴| ∗𝑎𝑥 |𝐵 |.

Proof. Note that |Trait[𝐴, 𝐵] | = |𝐴| → |𝐵 |; the rest are immediate. □

Lemma B.3 (Subtyping preservation). If 𝐴 <: 𝐵 then |𝐴| <: |𝐵 |.

Proof. Most of them are just 𝐹+𝑖 subtyping. We only show the rule S-trait
S-trait

𝐴2 <: 𝐴1 𝐵1 <: 𝐵2

Trait[𝐴1, 𝐵1] <: Trait[𝐴2, 𝐵2]

|𝐴2 | <: |𝐴1 | By i.h.
|𝐵1 | <: |𝐵2 | By i.h.
|𝐴1 | → |𝐵1 | <: |𝐴2 | → |𝐵2 | By TS-arr

□

Lemma B.4 (Disjointness preservation). If Δ ⊢ 𝐴 ∗ 𝐵 then |Δ| ⊢ |𝐴| ∗ |𝐵 |.

Proof. By induction on the derivation of the judgment.
• D-topL, D-topR, and D-rcdNeq are immediate.
•

D-tvarL
(𝛼 ∗𝐴) ∈ Δ 𝐴 <: 𝐵

Δ ⊢ 𝛼 ∗ 𝐵

|𝐴| <: |𝐵 | By Lemma B.3
𝑎 ∗𝐴 ∈ Δ Given
𝑎 ∗ |𝐴| ∈ |Δ| Above
|Δ| ⊢ 𝛼 ∗ |𝐵 | By TD-tvarL

•
D-tvarR
(𝛼 ∗𝐴) ∈ Δ 𝐴 <: 𝐵

Δ ⊢ 𝐵 ∗ 𝛼

|𝐴| <: |𝐵 | By Lemma B.3
𝑎 ∗𝐴 ∈ Δ Given
𝑎 ∗ |𝐴| ∈ |Δ| Above
|Δ| ⊢ |𝐵 | ∗ 𝛼 By TD-tvarR

•
D-forall

Δ, 𝛼 ∗𝐴1 &𝐴2 ⊢ 𝐵1 ∗ 𝐵2

Δ ⊢ ∀(𝛼 ∗𝐴1).𝐵1 ∗ ∀(𝛼 ∗𝐴2).𝐵2

|Δ|, 𝛼 ∗ |𝐴1 | & |𝐴2 | ⊢ |𝐵1 | ∗ |𝐵2 | By i.h.
|Δ| ⊢ ∀(𝛼 ∗ |𝐴1 |).𝐵1 ∗ ∀(𝛼 ∗ |𝐴2 |).|𝐵2 | By TD-forall

•
D-rcdEq

Δ ⊢ 𝐴 ∗ 𝐵
Δ ⊢ {ℓ :𝐴} ∗ {ℓ :𝐵}
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|Δ| ⊢ |𝐴| ∗ |𝐵 | By i.h.
|Δ| ⊢ {ℓ : |𝐴|} ∗ {ℓ : |𝐵 |} By TD-rcdEq

•
D-arr

Δ ⊢ 𝐴2 ∗ 𝐵2

Δ ⊢ 𝐴1 → 𝐴2 ∗ 𝐵1 → 𝐵2

|Δ| ⊢ |𝐴2 | ∗ |𝐵2 | By i.h.
|Δ| ⊢ |𝐴1 | → |𝐴2 | ∗ |𝐵1 | → |𝐵2 | By TD-arr

•
D-andL
Δ ⊢ 𝐴1 ∗ 𝐵 Δ ⊢ 𝐴2 ∗ 𝐵

Δ ⊢ 𝐴1 &𝐴2 ∗ 𝐵

|Δ| ⊢ |𝐴1 | ∗ |𝐵 | By i.h.
|Δ| ⊢ |𝐴2 | ∗ |𝐵 | By i.h.
|Δ| ⊢ |𝐴1 | & |𝐴2 | ∗ |𝐵 | By TD-andL

•
D-andR
Δ ⊢ 𝐴 ∗ 𝐵1 Δ ⊢ 𝐴 ∗ 𝐵2

Δ ⊢ 𝐴 ∗ 𝐵1 & 𝐵2

|Δ| ⊢ |𝐴| ∗ |𝐵1 | By i.h.
|Δ| ⊢ |𝐴| ∗ |𝐵2 | By i.h.
|Δ| ⊢ |𝐴| ∗ |𝐵1 | & |𝐵2 | By TD-andR

•
D-trait

Δ ⊢ 𝐵1 ∗ 𝐵2

Δ ⊢ Trait[𝐴1, 𝐵1] ∗ Trait[𝐴2, 𝐵2]

|Δ| ⊢ |𝐵1 | ∗ |𝐵2 | By i.h.
|Δ| ⊢ |𝐴1 | → |𝐵1 | ∗ |𝐴2 | → |𝐵2 | By TD-arr

•
D-traitArr

Δ ⊢ 𝐵1 ∗ 𝐵2

Δ ⊢ Trait[𝐴1, 𝐵1] ∗𝐴2 → 𝐵2

|Δ| ⊢ |𝐵1 | ∗ |𝐵2 | By i.h.
|Δ| ⊢ |𝐴1 | → |𝐵1 | ∗ |𝐴2 | → |𝐵2 | By TD-arr

•
D-arrTrait

Δ ⊢ 𝐵1 ∗ 𝐵2

Δ ⊢ 𝐴1 → 𝐵1 ∗ Trait[𝐴2, 𝐵2]

|Δ| ⊢ |𝐵1 | ∗ |𝐵2 | By i.h.
|Δ| ⊢ |𝐴1 | → |𝐵1 | ∗ |𝐴2 | → |𝐵2 | By TD-arr

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.



1:54 Weixin Zhang, Yaozhu Sun, and Bruno C. d. S. Oliveira

•
D-ax
𝐴 ∗𝑎𝑥 𝐵
Δ ⊢ 𝐴 ∗ 𝐵

|𝐴| ∗𝑎𝑥 |𝐵 | By Lemma B.2
|Δ| ⊢ |𝐴| ∗ |𝐵 | By TD-ax

□

Theorem B.5 (Type-safety). We have that:

If Δ; Γ ⊢ 𝑃 ⇒ 𝐴 { 𝑒 then |Δ|; |Γ | ⊢ 𝑒 ⇒ |𝐴|.
If Δ; Γ ⊢ 𝐸 ⇒ 𝐴 { 𝑒 then |Δ|; |Γ | ⊢ 𝑒 ⇒ |𝐴|.
If Δ; Γ ⊢ 𝐸 ⇐ 𝐴 { 𝑒 then |Δ|; |Γ | ⊢ 𝑒 ⇐ |𝐴|.

Proof. By induction on the typing judgment.
•

T-tyDecl
fresh 𝛽 Δ;𝛼 ↦→ 𝛽 ⊢ 𝐴 ⇒ 𝐴1 Δ;𝛼 ↦→ 𝛽 ⊢ 𝐵 ⇒ 𝐵1

𝛼 ↦→ 𝛽 ⊢false+ 𝐵1 ⇒ 𝐵2 Δ, 𝑋 ⟨𝛼, 𝛽⟩ ↦→ 𝐴1 & 𝐵2; Γ ⊢ 𝑃 ⇒ 𝐶 { 𝑒

Δ; Γ ⊢ type 𝑋 ⟨𝛼⟩ extends 𝐴 = 𝐵; 𝑃 ⇒ 𝐶 { 𝑒

|Δ|; |Γ | ⊢ 𝑒 ⇒ |𝐶 | By i.h.

•
T-tmDecl
Δ; Γ ⊢ 𝐸 ⇒ 𝐴 { 𝑒1 Δ; Γ, 𝑥 : 𝐴 ⊢ 𝑃 ⇒ 𝐵 { 𝑒2

Δ; Γ ⊢ 𝑥 = 𝐸; 𝑃 ⇒ 𝐵 { let 𝑥 : |𝐴| = 𝑒1 in 𝑒2

|Δ|; |Γ | ⊢ 𝑒1 ⇒ |𝐴| By i.h.
|Δ|; |Γ |, 𝑥 : |𝐴| ⊢ 𝑒2 ⇒ |𝐵 | By i.h.
|Δ|; |Γ | ⊢ let 𝑥 : |𝐴| = 𝑒1 in 𝑒2 ⇒ |𝐵 | By TT-let

• T-top, T-nat, and T-var are immediate.
•

T-app
Δ; Γ ⊢ 𝐸1 ⇒ 𝐴1 → 𝐴2 { 𝑒1 Δ; Γ ⊢ 𝐸2 ⇐ 𝐴1 { 𝑒2

Δ; Γ ⊢ 𝐸1 𝐸2 ⇒ 𝐴2 { 𝑒1 𝑒2

|Δ|; |Γ | ⊢ 𝑒1 ⇒ |𝐴1 | → |𝐴2 | By i.h.
|Δ|; |Γ | ⊢ 𝑒2 ⇐ |𝐴2 | By i.h.
|Δ|; |Γ | ⊢ 𝑒1 𝑒2 ⇒ |𝐴2 | By TT-app

•
T-anno
Δ; • ⊢ 𝐴 ⇒ 𝐵 Δ; Γ ⊢ 𝐸 ⇐ 𝐵 { 𝑒

Δ; Γ ⊢ 𝐸 : 𝐴 ⇒ 𝐵 { 𝑒 : |𝐵 |

|Δ|; |Γ | ⊢ 𝑒 ⇐ |𝐵 | By i.h.
|Δ|; |Γ | ⊢ 𝑒 : |𝐵 | ⇒ |𝐵 | By TT-anno
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•
T-rcd

Δ; Γ ⊢ 𝐸 ⇒ 𝐴 { 𝑒

Δ; Γ ⊢ {ℓ = 𝐸} ⇒ {ℓ :𝐴} { 𝑒

|Δ|; |Γ | ⊢ 𝑒 ⇒ |𝐴| By i.h.
|Δ|; |Γ | ⊢ {ℓ = 𝑒} ⇒ {ℓ : |𝐴|} By TT-rcd

•
T-proj
Δ; Γ ⊢ 𝐸 ⇒ {ℓ :𝐴} { 𝑒

Δ; Γ ⊢ 𝐸.ℓ ⇒ 𝐴 { 𝑒

|Δ|; |Γ | ⊢ 𝑒 ⇒ {ℓ : |𝐴|} By i.h.
|Δ|; |Γ | ⊢ 𝑒.ℓ ⇒ |𝐴| By TT-proj

•
T-tabs
Δ; • ⊢ 𝐴 ⇒ 𝐴1 Δ, 𝛼 ∗𝐴1; Γ ⊢ 𝐸 ⇒ 𝐵 { 𝑒

Δ; Γ ⊢ Λ(𝛼 ∗𝐴).𝐸 ⇒ ∀(𝛼 ∗ |𝐴1 |).𝐵 { 𝑒

|Δ| ⊢ |𝐴1 | By Lemma B.1
|Δ|; |Γ |, 𝛼 ∗ |𝐴| ⊢ 𝑒 ⇒ |𝐵 | By i.h.
|Δ|; |Γ | ⊢ Λ(𝛼 ∗ |𝐴|). 𝑒 ⇒ ∀(𝛼 ∗ |𝐴|). |𝐵 | By TT-tabs

•
T-tapp
Δ; • ⊢ 𝐴 ⇒ 𝐴1 Δ; Γ ⊢ 𝐸 ⇒ ∀(𝛼 ∗ 𝐵).𝐶 { 𝑒 Δ ⊢ 𝐴1 ∗ 𝐵

Δ; Γ ⊢ 𝐸 @𝐴 ⇒ [𝐴1/𝛼]𝐶 { 𝑒 |𝐴1 |

|Δ| ⊢ |𝐴1 | By Lemma B.1
|Δ|; |Γ | ⊢ 𝑒 ⇒ ∀(𝛼 ∗ |𝐵 |).|𝐶 | By i.h.
|Δ|; |Γ | ⊢ |𝐴1 | ∗ |𝐵 | By Lemma B.4
|Δ|; |Γ | ⊢ 𝑒 |𝐴| ⇒ [|𝐴1 |/𝛼] |𝐶 | By TT-tapp

•
T-let
Δ; • ⊢ 𝐴 ⇒ 𝐴1 Δ; Γ, 𝑥 : 𝐴1 ⊢ 𝐸1 ⇐ 𝐴1 { 𝑒1 Δ; Γ, 𝑥 : 𝐴1 ⊢ 𝐸2 ⇒ 𝐵 { 𝑒2

Δ; Γ ⊢ let 𝑥 : 𝐴 = 𝐸1 in 𝐸2 ⇒ 𝐵 { let 𝑥 : |𝐴1 | = 𝑒1 in 𝑒2

|Δ| ⊢ |𝐴1 | By Lemma B.1
|Δ|; |Γ |, 𝑥 : |𝐴1 | ⊢ 𝑒1 ⇐ |𝐴| By i.h.
|Δ|; |Γ |, 𝑥 : |𝐴1 | ⊢ 𝑒2 ⇒ |𝐵 | By i.h.
|Δ|; |Γ | ⊢ let 𝑥 : |𝐴1 | = 𝐸1 in 𝐸2 ⇒ |𝐵 | By TT-let

•
T-mergeTrait
Δ; Γ ⊢ 𝐸1 ⇒ Trait[𝐴1, 𝐵1] { 𝑒1 Δ; Γ ⊢ 𝐸2 ⇒ Trait[𝐴2, 𝐵2] { 𝑒2 Δ ⊢ 𝐵1 ∗ 𝐵2

Δ; Γ ⊢ 𝐸1 , , 𝐸2 ⇒ Trait[𝐴1 &𝐴2, 𝐵1 & 𝐵2] { _(self : |𝐴1 &𝐴2 |). 𝑒1 self , , 𝑒2 self

|Δ|; |Γ | ⊢ 𝑒1 ⇒ |𝐴1 → 𝐵1 | By i.h.
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|Δ|; |Γ | ⊢ 𝑒2 ⇒ |𝐴2 → 𝐵2 | By i.h.
|Δ|; |Γ |, self : |𝐴1 &𝐴2 | ⊢ self ⇒ |𝐴1 &𝐴2 | By TT-var
|𝐴1 &𝐴2 | <: |𝐴1 | By TS-andL
|Δ|; |Γ | ⊢ self ⇐ |𝐴1 | By TT-sub
|Δ|; |Γ | ⊢ 𝑒1 self ⇒ |𝐵1 | By TT-app
|𝐴1 &𝐴2 | <: |𝐴2 | By TS-andR
|Δ|; |Γ | ⊢ self ⇐ |𝐴2 | By TT-sub
|Δ|; |Γ | ⊢ 𝑒2 self ⇒ |𝐵2 | By TT-app
|Δ|; |Γ | ⊢ 𝑒1 self , , 𝑒2 self ⇒ |𝐵1 & 𝐵2 | By TT-merge
|Δ|; |Γ | ⊢ _(self : |𝐴1 &𝐴2 |). 𝑒1 self , , 𝑒2 self ⇒ |𝐴1 &𝐴2 | → |𝐵1 & 𝐵2 | By TT-abs

•
T-merge
Δ; Γ ⊢ 𝐸1 ⇒ 𝐴1 { 𝑒1 Δ; Γ ⊢ 𝐸2 ⇒ 𝐴2 { 𝑒2 Δ ⊢ 𝐴1 ∗𝐴2

Δ; Γ ⊢ 𝐸1 , , 𝐸2 ⇒ 𝐴1 &𝐴2 { 𝑒1 , , 𝑒2

|Δ|; |Γ | ⊢ 𝑒1 ⇒ |𝐴| By i.h.
|Δ|; |Γ | ⊢ 𝑒2 ⇒ |𝐵 | By i.h.
|Δ|; |Γ | ⊢ |𝐴| ∗ |𝐵 | By Lemma B.4
|Δ|; |Γ | ⊢ 𝑒1, , 𝑒2 ⇒ |𝐴| & |𝐵 | By TT-merge

•
T-new

Δ; Γ ⊢ 𝐸 ⇒ Trait[𝐴, 𝐵] { 𝑒 𝐵 <: 𝐴
Δ; Γ ⊢ new 𝐸 ⇒ 𝐵 { let self : |𝐵 | = 𝑒 self in self

|Δ|; |Γ | ⊢ 𝑒 ⇒ |𝐴| → |𝐵 | By i.h.
|𝐵 | <: |𝐴| By Lemma B.3
|Δ|; |Γ |, self : |𝐵 | ⊢ self ⇒ |𝐵 | By TT-var
|Δ|; |Γ |, self : |𝐵 | ⊢ self ⇐ |𝐴| By TT-sub
|Δ|; |Γ |, self : |𝐵 | ⊢ 𝑒 self ⇐ |𝐵 | By TT-app
|Δ|; |Γ | ⊢ let self : |𝐵 | = 𝑒 self in self ⇒ |𝐵 | By TT-let

•
T-open
Δ; Γ ⊢ 𝐸1 ⇒ {ℓ𝑖 :𝐴𝑖 } { 𝑒1 Δ; Γ, ℓ𝑖 : 𝐴𝑖 ⊢ 𝐸2 ⇒ 𝑒2 { 𝐵 fresh 𝑥

Δ; Γ ⊢ open 𝐸1 in 𝐸2 ⇒ 𝐵 { let 𝑥 = 𝑒1 in let ℓ𝑖 : |𝐴| = 𝑥 .ℓ𝑖 in 𝑒2

|Δ|; |Γ | ⊢ 𝑒1 ⇒ |{ℓ𝑖 :𝐴𝑖 }| By i.h.
|Δ|; |Γ | ⊢ 𝑒1.ℓ𝑖 ⇒ |𝐴𝑖 | By TT-proj
|Δ|; |Γ |⊢ let ℓ𝑖 : |𝐴𝑖 | = 𝑒1 .ℓ𝑖 in 𝑒2 ⇒ |𝐵 | By TT-let

•
T-trait
Δ; • ⊢ 𝐴 ⇒ 𝐴1 Δ; • ⊢ 𝐵 ⇒ 𝐵1 Δ; Γ, self : 𝐴1 ⊢ 𝐸1 ⇒ Trait[𝐴2, 𝐵2] { 𝑒1

𝐴1 <: 𝐴2 Δ; Γ, self : 𝐴1, super : 𝐵2 ⊢ 𝐸2 ⇒ 𝐶 { 𝑒2 𝐶 ∗ 𝐵2 𝐶 & 𝐵2 <: 𝐵1

Δ; Γ ⊢ trait[self : 𝐴] implements 𝐵 inherits 𝐸1 => 𝐸2 ⇒ Trait[𝐴1,𝐶 & 𝐵2]
{ _(self : |𝐴1 |). let super = 𝑒1 self in 𝑒2 , , super

|Δ| ⊢ |𝐴1 | By Lemma B.1
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|Δ| ⊢ |𝐵1 | By Lemma B.1
|Δ|; |Γ |, self : |𝐴1 | ⊢ 𝑒1 ⇒ |𝐴2 | → |𝐵2 | By i.h.
|𝐴1 | <: |𝐴2 | By Lemma B.3
|Δ|; |Γ |, self : |𝐴1 |, super : |𝐵2 | ⊢ 𝑒2 ⇒ |𝐶 | By i.h.
|Δ|; |Γ |, self : |𝐴1 | ⊢ self ⇒ |𝐴1 | By TT-var
|Δ|; |Γ |, self : |𝐴1 | ⊢ self ⇐ |𝐵1 | By TT-sub
|Δ|; |Γ |, self : |𝐴1 | ⊢ 𝑒1 self ⇒ |𝐵2 | By TT-tapp
|Δ|; |Γ |, self : |𝐴1 |, super : |𝐵2 | ⊢ 𝑒2 , , super ⇒ |𝐶 | & |𝐵2 | By TT-merge
|Δ|; |Γ | ⊢ let super = 𝑒1 self in 𝑒2 , , super ⇒ |𝐶 | & |𝐵2 | By TT-let
|Δ|; |Γ | ⊢ _(self : |𝐴1 |). let super = 𝑒1 self in 𝑒2 , , super ⇒ |𝐴1 | → (|𝐶 | & |𝐵2 |) By TT-abs

•
T-forward
Δ; Γ ⊢ 𝐸1 ⇒ Trait[𝐴, 𝐵] { 𝑒1 Δ; Γ ⊢ 𝐸2 ⇐ 𝐴 { 𝑒2

Δ; Γ ⊢ 𝐸1ˆ𝐸2 ⇒ 𝐵 { 𝑒1 𝑒2

|Δ|; |Γ | ⊢ 𝑒1 ⇒ |𝐴| → |𝐵 | By i.h.
|Δ|; |Γ | ⊢ 𝑒2 ⇐ |𝐴| By i.h.
|Δ|; |Γ | ⊢ 𝑒1 𝑒2 By TT-app

•
T-abs

Δ; Γ, 𝑥 : 𝐴 ⊢ 𝐸 ⇐ 𝐵 { 𝑒

Δ; Γ ⊢ _𝑥.𝐸 ⇐ 𝐴 → 𝐵 { _𝑥.𝐸

|Δ|; |Γ |, 𝑥 : |𝐴| ⊢ 𝑒 ⇐ |𝐵 | By i.h.
|Δ|; |Γ | ⊢ _(𝑥 :𝑒). ⇐ |𝐴| → |𝐵 | By TT-abs

•
T-sub
Δ; Γ ⊢ 𝐸 ⇒ 𝐵 { 𝑒 𝐵 <: 𝐴

Δ; Γ ⊢ 𝐸 ⇐ 𝐴 { 𝑒

|Δ|; |Γ | ⊢ 𝑒 ⇒ |𝐵 | By i.h.
|𝐵 | <: |𝐴| By Lemma B.3
|Δ|; |Γ | ⊢ 𝑒 ⇐ |𝐵 | By TT-sub

□
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