
Compositional Programming

Weixin Zhang1,2, Yaozhu Sun2, and Bruno C. d. S. Oliveira2
1.University of Bristol 2.The University of Hong Kong

ECOOP 2021

1

▸ Conventional object-oriented programming and functional programming suffer from the
Expression Problem [Wadler 1998]

▸ Dealing with dependencies modularly poses extra challenges

▸ Existing design patterns partly address these problems

▸ E.g. Object Algebras [Oliveira & Cook 2012], Polymorphic Embedding [Hofer et al. 2008], Cake pattern [Odersky &
Zenger 2005], Finally Tagless [Carette et al. 2009], Datatypes a la carte [Swierstra 2008]

▸ Lack of proper mechanisms for modular dependencies and compositions

▸ Heavily parameterized and boilerplate code

Compositional Programming

Motivation

class Mul(e1: Exp, e2: Exp) extends Exp {
 def eval = e1.eval * e2.eval
}

print :: Exp -> String
print (Lit n) = show n
print (Add e1 e2) =
 if eval e2 == 0 -- dependency on eval
 then print e1
 else "(" ++ print e1 ++ "+" ++ print e2 ")

abstract class Exp {
 def eval: Int
}
class Lit(n: Int) extends Exp {
 def eval = n
}
class Add(e1: Exp, e2: Exp) extends Exp {
 def eval = e1.eval + e2.eval
}

OOP data Exp where
 Lit :: Int -> Exp
 Add :: Exp -> Exp -> Exp

eval :: Exp -> Int
eval (Lit n) = n
eval (Add e1 e2) = eval e1 + eval e

FP

2

Compositional Programming

Contributions
▸ Compositional Programming: A new statically-typed modular programming style

▸ Solving the Expression Problem and dealing with modular programs with complex dependencies

▸ CP: A language design for Compositional Programming

▸ Elaborated to Fi+ [Bi et al., 2019], a recent calculus that supports disjoint intersection types [Oliveira et
al. 2016], disjoint polymorphism [Alpuim et al. 2017] and nested composition [Bi et al. 2018]

▸ We proved that the elaboration is type-safe and coherent

▸ Attribute Grammars in CP

▸ Inspired by Rendel et al. [2014]’s encoding but without explicit definitions of composition operators

▸ Polymorphic contexts

▸ Allowing for modular contexts in modular components

▸ Implementation, case studies, and examples

3

Compositional Programming

Solving the Expression Problem: Operation Extensions
4

Compositional interfaces

First-class traits
Method patterns

Nested trait composition

Self-type annotations

Compositional Programming

Solving the Expression Problem: Variant Extensions
5

Inheritance

Overriding

Compositional Programming

Dependencies and S-attributed Grammars
6

▸ CP can deal with programs with complex dependencies modularly

▸ Child dependencies: attributes depend on other synthesized attributes of the
children

Strong dependency

Weak dependency

Compositional Programming

Dependencies and S-attributed Grammars
7

▸ Self dependencies: attributes depend on other synthesized attributes
of the self-reference

▸ Mutual dependencies: two attributes are inter-defined

Compositional Programming

Context Evolution
8

▸ Highly non-modular: existing code has to be modified when a new context is needed

▸ Not encapsulating contexts: contexts are fully exposed even if not directly used

▸ Problem: different modular components may require different contexts

Compositional Programming

Polymorphic Contexts
9

▸ Allowing modular & encapsulated contexts

Disjoint polymorphism

▸ Composing the components with different contexts modularly

Compositional Programming

Polymorphic Contexts
10

Compositional Programming

Formal Syntax
11

CP programSource

Fi+ expressionTarget
Elaboration

Declarations, Sorts & Trait-related constructs

▸ The elaboration builds on ideas from generalized Object Algebras [Oliveira

et al. 2013] and the denotational model of inheritance [Cook and Palsberg, 1989]

Compositional Programming

Elaborating Compositional Interfaces and Sorts
12

Compositional Programming

Elaborating Traits
13

Compositional Programming

Elaborating Child Dependencies
14

Compositional Programming

Elaborating Self-type Annotations
15

Compositional Programming

Elaborating Inheritance and Overriding
16

Compositional Programming

Elaboration Overview
17

▸ We have proved that the elaboration of CP into Fi+ is type-
safe and coherent

▸ Type-safety theorem

▸

▸ Coherence theorem

▸ Each well-typed CP program has a unique elaboration

Compositional Programming

Metatheory
18

▸ A DSL for parallel prefix circuits [Hinze 2004]

▸ Interpretations: width, depth, wellSized and layout (depending on width)

▸ Variant extension: RStretch

▸ Most compact and modular w.r.t existing implementations

Compositional Programming

Case Studies: Scans
19

Language Haskell [Gibbons & Wu, 2014] Scala [Zhang & Oliveira, 2019] Fi+ [Bi et al., 2019] CP

SLOC 87 129 72 70

Compositional Programming

Case Studies: Mini Interpreter
20

▸ A mini interpreter for an expression language (~700 SLOC)

▸ Including numeric and boolean literals, arithmetic expressions, logical
expressions, comparisons, branches, variable bindings, function closures …

▸ Sublanguages are separately defined as features that can be arbitrarily
combined to form a product line of interpreters

▸ Examine the ability to model non-trivial dependencies and multi-
sorted languages

Compositional Programming

Case Studies: C0 Compiler
21

▸ An educational one-pass compiler

▸ A subset of C compiled to Java bytecode

▸ Originally written in Java with semantics hardcoded in the parser, thus is non-
modular

▸ Rendel et al. [2014] modularized C0 using generalized Object Algebras

▸ Comparison

Compositional Programming

Future Work

▸ There is a lot of room for making CP more expressive and
practical

▸ Recursive types and type constructors

▸ Mutable states

▸ Type inference

22

Compositional Programming

Conclusion
23

▸ We have presented key concepts of Compositional
Programming and a language design called CP

▸ Offering an alternative style to FP and OOP

▸ Allowing programs with non-trivial dependencies to be modularized
in a natural way

▸ Applicability demonstrated by various examples and case studies

▸ Artifact is available at

Thank you!https://github.com/wxzh/CP

