5 # Kk =
THE UNIVERSITY OF HONG KONG

Shallow EDSLs and Object-Oriented Programming:
Beyond Simple Compositionality

Weixin Zhang and Bruno C. d. S. Oliveira

<Programming> 2019
April 3, 2019

Shallow EDSLs and Object-Oriented Programming: Beyond Simple Compositionality

Background
programming languages
— AN
general-purpose domain-specific
~ ~
standalone embedded
(external) (internal)

e I

deep shallow

Shallow EDSLs and Object-Oriented Programming: Beyond Simple Compositionality

Shallow vs. deep embeddings

» Shallow embeddings » Deep embeddings

» Semantics first » Syntax first

» Compositional » Non-compositional

» No AST » Have an AST

» Easy to add new language » Easy to add new interpretations
constructs

» Hard to add new language
» Hard to add new interpretations constructs

Shallow EDSLs and Object-Oriented Programming: Beyond Simple Compositionality

Contribution
» Shallow embeddings and OOP are closely related

» Both essence is procedural abstraction [Reynolds,1978]

Gibbons & Wu, 2015 Cook, 2009

shallow embeddings procedural abstraction

» OOP mechanisms, subtyping, inheritance and type-
refinement increase the modularity of shallow EDSLs

» Enable multiple (possibly dependent) interpretations

Shallow EDSLs and Object-Oriented Programming: Beyond Simple Compositionality

SCANS: a DSL for parallel prefix circuits

» Grammar: (circuit) :

id 3 fan 3

I

stretch 32 3 fan 3

HERSaN

‘id” (positive-number)

‘fan’ (positive-number)

(circuit) ‘beside’ {circuit)

(circuit) ‘above’ {(circuit)

‘stretch’ (positive-numbers) (circuit)

‘" {circuit) ‘)

id 3 beside fan 3 id 3 above fan 3

NN

4

N

AEENY

(fan 2 beside fan 2)
above

(stretch 2 2 fan 2)
above

(id 1 beside fan 2 beside id 1)

Shallow EDSLs and Object-Oriented Programming: Beyond Simple Compositionality 6

Embedding SCANS in Haskell

» A shallow implementation should conform to the following signatures

id .. Int — Circuit
an .. Int — Circuit :
f , o o B procedural abstraction
beside .. Circuit — Circuit — Circuit
above .. Circuit — Circuit — Circuit
stretch .. [Int] — Circuit — Circuit

» E.g. an interpretation calculating the width

type Circuit = Int

idn =n \\\ > ((fan 2 ‘beside’ fan 2) ‘above’
fann =n | stretch [2,2] (fan 2) ‘above’
beside c; ¢y =1+ ¢y S | (id 1 ‘beside’ fan 2 ‘beside‘id 1))
abovecycy =y \ <

stretch nsc = sum ns

Shallow EDSLs and Object-Oriented Programming: Beyond Simple Compositionality

Towards 00P

» An isomorphic encoding of width

type Circuit = Int

id n =n
fann =n
besidecyc, =cq+c¢Co
abovecy c, =
stretch nsc = sum ns

\ 4

newtype Circuit; = Circuit; {width, :: Int}

id, n = Circuit, {width, =n}

fan, n = Circuit, {width, =n}

beside, ¢y ¢y = Circuit,; {width, = width, ¢y + width, ¢, }
abovey ¢q Cy = Circuit, {width, = width; ¢, }

stretch, ns c = Circuit; {width, =sum ns}

Shallow EDSLs and Object-Oriented Programming: Beyond Simple Compositionality

Embedding SCANS in 00P

» It is easy to port the definition into an OOP language like Scala

// object interface
trait Circuit, {def width : Int}

// concrete implementations

class Id, (n : Int) extends Circuit {
def width =n

}
trait Fan, extends Circuity {
val n:Int
def width =n
}

trait Beside, extends Circuit; {
val ¢, ¢, : Circuit,
def width = c¢,.width + c,.width

}

trait Above, extends Circuit, {
val ¢y, ¢y : Circuit,
def width = c,.width

}

trait Stretch, extends Circuity {
val ns : List[Int]; val ¢ : Circuit,
def width = ns.sum

Shallow EDSLs and Object-Oriented Programming: Beyond Simple Compositionality 9

Smart constructors

» Smart constructors are needed for building a circuit object conveniently
def id (x : Int) = new Id, {valn =x}
def fan(x : Int) =new Fan, {valn =x}

def beside (x : Circuity,y : Circuit;) = new Beside; {valc; =x;valcy, =y}
def above(x : Circuit,,y : Circuit;) = new Above, {valc, =x;valc, =y}
def stretch (x : Circuity,xs : Intx) = new Stretch, {val ns = xs.toList;val c = x}

» Constructing the example circuit again

val circuit = above(beside (fan(2), fan(2)),
above (stretch(fan(2), 2, 2),
beside(beside(id(1),fan(2)),id(1))))

> circuit.width
4

Shallow EDSLs and Object-Oriented Programming: Beyond Simple Compositionality

Multiple interpretations in Haskell

» Often claimed as a limitation of shallow embedding

» Typical workaround is to use tuples

» e.g.additionally supporting depth for SCANS
type Circuit, = (Int,Int)
idy n = (n,0)
fan, n =(n,1)
above, ¢y ¢co = (width cy,depth c; + depth c,)
beside, ¢y ¢, = (width c; + width ¢4, depth ¢y ‘max‘depth c,)
stretch, ns ¢ = (sum ns, depth c)
width = fst
depth = snd

» However, this implementation is non-modular

10

Shallow EDSLs and Object-Oriented Programming: Beyond Simple Compositionality 11

Multiple interpretations in Scala

» Multiple interpretations can be modular with Scala

trait Circuit, extends Circuit, {def depth : Int} // extended semantic domain

trait Id, extends Id; with Circuit, {def depth =0}

trait Fan, extends Fan, with Circuit, {def depth =1}

trait Above, extends Above, with Circuit, {
override val c,, ¢, : Gircuit,-// type-refinement that allows depth invocations
def depth = c,.depth c2.d

} Inheritance

trait Beside, extends Beside; with Circuit, {
override val cq, ¢, : Circuit, // type-refinement that allows depth invocations
def depth = Math.max (cq.depth, c,.depth)

}

trait Stretch, extends Stretch, with Circuit, {
override val c : Circuit, // type-refinement that allows depth invocations

def depth = c.depth
}

Shallow EDSLs and Object-Oriented Programming: Beyond Simple Compositionality

Dependent interpretations in Haskell

» An interpretation depends not only on itself but also on
other interpretations

» E.g. wellSized, which depends on width
type Circuit; = (Int, Bool)

idy n = (n, True)
fany n = (n, True)

aboves ¢y ¢, = (width cq,wellSized ¢y A wellSized c, /\l width ¢ = width c,))

beside; ¢, ¢, = (width ¢y + width ¢y, wellSized c; A wellSized c,)
stretchy ns ¢ = (sum ns, wellSized c A length ns =|width c

wellSized = snd

12

Shallow EDSLs and Object-Oriented Programming: Beyond Simple Compositionality 13

Dependent interpretations in Scala

4

Again, modular dependent interpretations are unproblematic in Scala

trait Circuit; extends Circuit; {def wellSized : Boolean} // extended semantic domain
trait Id, extends Id,; with Circuity {def wellSized = true}
trait Fan, extends Fan, with Circuit, {def wellSized = true}
trait Above; extends Above, with Circuit {
override val cq, ¢, : Circuits
def wellSized =
c;.wellSized A c,.wellSized Alc,.width = c,.width|// width dependency

}

trait Beside; extends Beside; with Circuits {
override val cq, ¢, : Circuity
def wellSized = c,.wellSized A cy.wellSized
}
trait Stretchs extends Stretch; with Circuit; {
override val c : Circuits
def wellSized = c.wellSized A|ns.length = c.width| // width dependency

Shallow EDSLs and Object-Oriented Programming: Beyond Simple Compositionality

14

Context-sensitive interpretations in Haskell

» An interpretation relies on some context

» e.g. layout \\ [10,1),(2,3)],[(1,3)],[(1,2)]]
4

type Circuit, = (Int|(Int — Int)|— [[(Int, Int)]])
=AM =[]

idy n
fanyn =M A = [[(FO,f)]j—[1..n=1]]])
above, c; ¢, = (width c¢;, Af — layout ¢, f + layout c, f)
beside, c; ¢, = (width ¢; + width c,,
Af — lzw (H) (layout ¢4 f) (layout ¢, (f o (width c;+))))
stretch, ns ¢ = (sum ns, Af — layout c (f o pred o (scanl1 (+) ns!!)))

layout = snd

Shallow EDSLs and Object-Oriented Programming: Beyond Simple Compositionality

15

Context-sensitive interpretations in Scala

trait Circuit, extends Circuit, {def layoutl(f : Int = Int)|: List[List [(Int, Int)] |}
trait Id, extends Id, with Circuit, {def layout(f : Int = Int) = List() }
trait Fan, extends Fan, with Circuit, {

def layout (f : Int = Int) = List(for(i « List.range(1,n)) yield(f (0),f (i)))
}
trait Above, extends Above; with Circuit, {

override val cq, ¢, : Circuit,

def layout (f : Int = Int) = cq.layout(f) H cy.layout (f)
}
trait Beside, extends Beside, with Circuit, {

override val ¢y, ¢, : Circuit,

def layout(f : Int = Int) =

lzw (cq.layout(f), cy.layout (f.compose (c; . width + _)))(_+H _)

}

trait Stretch, extends Stretch; with Circuit, {
override val c : Circuit,
def layout(f : Int = Int) = {
val vs = ns.scanLeft (0) (_ + _).tail
c.layout (f.compose(vs(_)—1))}

Shallow EDSLs and Object-Oriented Programming: Beyond Simple Compositionality

An alternative encoding of modular interpretations

» Allow non-linear extensions and loose dependencies

» e.g. wellSized

trait Circuity extends Circuit, {def wellSized : Boolean }
trait Id; extends Circuit; {def wellSized = true}

trait Stretch, extends Circuits {
val c : Circuity; val ns : List [Int]
def wellSized = c.wellSized A ns.length = c.width

J

» Require an extra step tor combining wellSized and width

trait Id,5; extends Id; with Id,

trait Stretch,4 extends Stretch, with Stretch,

16

Shallow EDSLs and Object-Oriented Programming: Beyond Simple Compositionality 17

Adding language constructs

» Extend SCANS with right stretches

rstretch :: [Int] — Circuit, — Circuit,
rstretch ns ¢ = stretch, (1 :init ns) ¢ ‘beside,‘id, (last ns—1)

def rstretch (ns : List[Int], c : Circuit,) =

stretch (1 :: ns.init, beside(c, id (ns.last — 1)))

trait RStretch extends Stretch, {
override def layout (f : Int = Int) = {
val vs = ns.scanLeft (ns.last — 1) (_+ _).init

c.layout (f.compose(vs(_))) }

Shallow EDSLs and Object-Oriented Programming: Beyond Simple Compositionality 18

Modular terms
» Object Algebras [Oliveira & Cook, 2012] come to the rescue
trait Circuit[C] { def circuit[C](f : Circuit[C]) =
defid(x:Int):C f.above(f .beside (f .fan(2),f.fan(2)),
def fan(x:Int): C f.above(f.stretch(f.fan(2), 2, 2),
def above(x:C,y:C):C f.beside (f.beside (f.id (1), f.fan(2)),f.id(1))))

def beside(x:C,y:C):C
def stretch(x: C,xs : Intx) : C

}

trait Factory, extends Circuit[Circuit,] { trait Factory, extends Circuit[Circuity] {...}
def id (x : Int) = new Id, {valn = x}
def fan (x : Int) =new Fan, {valn=x}

def beside (x : Circuit,,y : Circuit;) = new Beside,; {valc; =x;valc, =y}
def above (x : Circuity,y : Circuit;) = new Above; {valc; =x;valc, =y}
def stretch (x : Circuity,xs : Intx) = new Stretch, {val ns = xs.toList;val c = x}

}
circuit (new Factory, { }).width // 4

circuit(new Factory, { }).layout {x = x} // List(List((0,1),(2,3)),List((1,3)),List((z,2)))

Shallow EDSLs and Object-Oriented Programming: Beyond Simple Compositionality

19

Modular terms, extended

trait ExtendedCircuit[C] extends Circuit[C] {
def rstretch (x: C,xs : Intx) : C

J

trait ExtendedFactory , extends ExtendedCircuit [Circuit,] with Factory, {
def rstretch (x : Circuity,xs : Intx) = new RStretch {val c = x; val ns = xs.toList }

}

def circuit, [C] (f : ExtendedCircuit[C]) = f.rstretch(circuit(f), 2,2, 2, 2)

Shallow EDSLs and Object-Oriented Programming: Beyond Simple Compositionality 20

Case study

» We refactored an external SQL query processor [Rompf & Amin,
2015] to make it more modular, shallow, and embedded

tid, time, title, room
1, 09:30 AM, Tuning IoT Devices into Robust and Safe Computers, Paganini
2, 11:00 AM, Separating Use and Reuse to Improve Both, Paganini

select * from talks.csv def go = FROM ("talks.csv")

select room, title from talks.csv

: def g; = gy WHERE ‘time === "09:00 AM"
where time = ’09:00 AM’

SELECT (‘room, ‘title)
select x def g, =
from(select time, room, title as title; from talks.csv) g, SELECT (‘time, ‘room, ‘title AS ‘title;) JOIN

join (select time,room,title as title, from talks.csv) (q, SELECT (‘time, ‘room, ‘title AS ‘title,)) WHERE
where title; <> title, ‘title; <> ‘title,

Shallow EDSLs and Object-Oriented Programming: Beyond Simple Compositionality 21

A relational algebra interpreter

» Under the surface syntax, a relational algebra expression is constructed

=>

» Each relational algebra operator implements the following interface

Project(Schema("room", "title"),
Filter (Eq (Field ("time"), Value("09:00 AM")),
Scan ("talks.csv")))

FROM ("talks.csv")
WHERE ‘time ==="09:00 AM"
SELECT (‘room, ‘title)

trait Operator { trait Join extends Operator {
val op,,0p, : Operator

def resultSchema : Schema | | def resultSchema —
def execOp (yld : Record = Unit) : Unit op,.resultSchema +- op,.resultSchema

} def execOp (yld : Record = Unit) =
/ / T \ \ opq.execOp {rec; =
. i . . op,.execOp {rec, =
Project| |Join Filter| |Scan Print pzral keyf = reczl .schema intersect rec,.schema
if (recy (keys) = rec, (keys))
yld(Record (rec .fields + rec, . fields,
rec,.schema +H-rec,.schema))

3

Shallow EDSLs and Object-Oriented Programming: Beyond Simple Compositionality 22

From Interpreter to compiler

» The interpreter is simple but slow

» Turning a slow interpreter into a fast compiler while
keeping the simplicity — staging (LMS [Rompf & Odersky, 2010])

» Actions on records are delayed to the generated code

def execOp (yld : Record = Unit) : Unit

¥

def execOp (yld : Record =>|Rep [Unit ||) :[Rep [Unit]

» Two backends are supported (Scala and C), modularly

Shallow EDSLs and Object-Oriented Programming: Beyond Simple Compositionality

Syntax extensions
» Add aggregations (group by) and hash joins

trait Group extends Operator {
val keys, agg : Schema;val op : Operator
def resultSchema = keys H agg
def execOp (yld : Record = Unit) {...}
}
trait HashJoin extends Join {
override def execOp (yld : Record = Unit) = {
val keys = op,.resultSchema intersect op,.resultSchema
val hm = new HashMapBuffer (keys, op,.resultSchema)
op,.execOp {rec; =
hm (recy (keys)) += rec,.fields }
op,.execOp {rec, =
hm (recy (keys)) foreach {rec; =
yld (Record (recy.fields + rec,.fields, rec;.schema -+ rec,.schema)) } } }

23

Shallow EDSLs and Object-Oriented Programming: Beyond Simple Compositionality 24

Evaluation

» The same code is generated, thus performance is similar

» The modularity comes with a few more lines of code

Source Functionality Deep Shallow
query unstaged SQL interpreter 83 08
query staged SQL to Scala compiler 179 194

query optc SQL to C compiler 245 262

Shallow EDSLs and Object-Oriented Programming: Beyond Simple Compositionality

More In the paper

Shallow EDSLs and Object-Oriented Programming } An O O P i n S p i re d H a S ke I I e n CO d i n g Of

Beyond Simple Compositionality

Weixin Zhang" and Bruno C. d. S. Oliveira"

modular (dependent) interpretations

Context. Embedded Domain-Specific Languages (EDSLs) are a common and widely used approach to DSLs
invarious languages, including Haskell and Scala. There are two main implementation techniques for EDSLs:

lated. Gibbons and Wu already discussed the relationship between shallow EDSLs and procedural abstraction, . l

refinement) increase the modularity and reuse of shallow EDSLs when compared to classical procedural ab- . a
straction by enabling a simple way to express multiple, possibly dependent, interpretations. an P n C
establishes the connection between shallow embeddings and OOP, which enables a better understanding

shallow embeddings and deep embeddings.
Inquiry. Shallow embeddings are quite simple, but they have been critidzed in the past for being quite
while Cook discussed the connection between procedural abstraction and OOP. We make the transitive step
in this paper by connecting shallow EDSLs directly to OOP via procedural abstraction, The knowled ge about
Grounding. We make our arguments by using Gibbons and Wu's examples, where procedural abstraction
is used in Haskell to model a simple shallow EDSL. We recode that EDSL in Scala and with an improved
¢ = N . Ran 9 . . a0 . " - X 1 . > . - .
of both concepts, huul{(lly, this w.'ul.k illustrates programming techniques that can be used to improve the .o
modularity and reuse of shallow EDSLs.
ACM CCS 2012

. .
limited in terms of modularity and reuse. In particular, it is often argued that supporting multiple DSL inter- CIaSS ‘ erl l lt C Where
pretations in shallow embeddings is difficult,
this relationship enables us to improve on implementation techniques for EDSLs,
00-inspired Haskell encoding. We further illustrate our approach with a case study on refactoring a deep PR
external SQL DSL implementation to make it more modular, shallow, and embedded. a Ove C) C) C
* Software and its engineering = L

Approach, This paper argues that shallow EDSLs and Object-Oriented Programming (OOP) are closely re-
o
Int—c
Knowledge. This paper argues that common OOP mechanisms (including inheritance, subtyping, and type-
Importance. This work is important for two reasons, Firstly, from an intellectual point of view, this work
guage features; D in specific languag .
Keywords embedded domain-specific languages, shallow embedding, object-oriented programming Sl ’ etC e I’ ! t) C) C

class a < b where
prj::a—b
instance a < a where

The Art, Science, and Engineering of Programming pU X=X

Perspective The Art of Programming instance (a, b) '< a Where

Area of Submission Domain-Specific Languages, Modularity and Separation of Concerns

S g i G4 SO prj = fst
- instance (b < ¢) = (a,b) < c where
prj = prjosnd

Shallow EDSLs and Object-Oriented Programming: Beyond Simple Compositionality

Conclusion R

«\\3‘\\0\

» OOP and shallow embeddings are closely related

» The essence of both is procedural abstraction

» OOP abstractions bring extra modularity to shallow embeddings

» Subtyping, inheritance and type-refinement

» Combine extensible interpreters with Object Algebras for greater good

» Modular multiple (possibly dependent) interpretations and terms
» Shallow embeddings can be performant with staging

» The motivation to employ deep embeddings becomes weaker

» Mostly reduced to the need for AST transformations

https://github.com/wxzh/shallow-dsl|

26

